Oracle9i: Program with PL/SQL

Electronic Presentation

40054GC11
Production 1.1
October 2001
D34010

ORACLES

Authors

Nagavalli Pataballa
PriyaNathan

Technical Contributors
and Reviewers

AnnaAtkinson
Bryan Roberts
Caroline Pereda
Cesljas Zarco
Coley William
Daniel Gabel

Dr. Christoph Burandt
Hakan Lindfors
Helen Robertson
John Hoff
Lachlan Williams
Laszlo Czinkoczki
Laura Pezzini
LindaBoldt
Marco Verbeek
Natarajan Senthil
Priya Vennapusa
Roger Abuzal af
Ruediger Steffan
Sarah Jones
Stefan Lindblad
Susan Dee

Publisher
Sheryl Domingue

Copyright © Oracle Corporation, 1999, 2000, 2001. All rights reserved.

This documentation contains proprietary information of Oracle Corporation. It is provided under a
license agreement containing restrictions on use and disclosure and is also protected by copyright
law. Reverse engineering of the software is prohibited. If this documentation is delivered to a U.S.
Government Agency of the Department of Defense, then it is delivered with Restricted Rights and the
following legend is applicable:

Restricted Rights Legend

Use, duplication or disclosure by the Government is subject to restrictions for commercial computer
software and shall be deemed to be Restricted Rights software under Federal law, as set forth in
subparagraph (c)(1)(ii) of DFARS 252.227-7013, Rights in Technical Data and Computer Software
(October 1988).

This material or any portion of it may not be copied in any formor by any means without the express
prior written permission of the Education Products group of Orac le Corporation. Any other copying is

a violation of copyright law and may result in civil and/or criminal penalties.

If this documentation is delivered to a U.S. Government Agency not within the Department of
Defense, then it is delivered with “ Restricted Rights,” as defined in FAR 52.227-14, Rights in Data-
General, including Alternate Il (June 1987).

The information in this document is subject to change without notice. If you find any problems in the
documentation, please report them in writing to Worldwide Education Services, Oracle Corporation,
5000racle Parkway, Box SB-6, Redwood Shores, CA 94065. Oracle Corporation does not warrant

that this document is errorfree.

Oracle and all references to Oracle Products are trademarks or registered trademarks of Oracle
Corporation.

All other products or company names are used for identification purposes only, and may be
trademarks of their respective owners.

ORACLE

Curriculum Map

Copyright © Oracle Corporation, 2001. All rights reserved.

Languages Curriculum for Oracle9l

— T

AR RamRe

Copyright © Oracle Corporation, 2001. All rights reserved.

OvervieWwsof PL/SQL

Copyright © Oracle Corporation, 2001. All rights reserved.

Course Objectives

After completing this course, you should be able to
do the following:

Describe the purpose of PL/SQL

Describe the use of PL/SQL for the developer as
well as the DBA

Explain the benefits of PL/SQL

Create, execute, and maintain procedures,
functions, packages, and database triggers

Manage PL/SQL subprograms and triggers
Describe Oracle supplied packages
Manipulate large objects (LOBSs)

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

About PL/SQL

PL/SQL is the procedural extension to SQL with
design features of programming languages.

Data manipulation and query statements of SQL
are included within procedural units of code.

ORACLE

-3 Copyright © Oracle Corporation, 2001. All rights reserved.

PL/SQL Environment

PL/SQL engine

PL/SQL
’ SQL

ORACLE
-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Integration

Benefits of PL/SQL

«

Shared Oracle server
library

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

Benefits of PL/SQL

Improved performance

—saL >
aSQr—>

Other DBMSs
—— saL >

.
- SQL >

Oracle with
> PL/SQL

-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Benefits of PL/SQL

Modularize program development

DECLARE

EXCEPTION

(sen |

Copyright © Oracle Corporation, 2001. All rights reserved.

ORACLE

Benefits of PL/SQL

PL/SQL is portable.
You can declare variables.

Copyright © Oracle Corporation, 2001. All rights reserved.

ORACLE

Benefits of PL/SQL

You can program with procedural language
control structures.

PL/SQL can handle errors.

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

Benefits of Subprograms

Easy maintenance

Improved data security and integrity
Improved performance

Improved code clarity

ORACLE
I-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Invoking Stored Procedures
and Functions

Scott ‘ LOG EXECUTI ON
procedure

XXXXXXXXXXXXXX
VVVVVVVVVVVVVV
XXXXXXXXXXXXXX
VVVVVVVVVVVVVV
XXXXXXXXXXXXXX
VVVVVVVVVVVVVV
XXXXXXXXXXXXXX
VVVVVVVVVVVVVV
VVVVVVVVVVVVVV XXXXKXXKXKKXKX
XXX XXXXXXXXXXX VVVVVVVVVVVVVV

Oracle Oracle Oracle

XXXXXXXXXXXXXX

Portal Discoverer Forms

XXXXXXXXXXXXXX

D ev eI (@) p er VVVVVVVVVVVVVV

XXXXXXXXXXXXXX

VVVVVVVVVVVVVV a

Scott

XXXXXXXXXXXXXX

ORACLE

I-11 Copyright © Oracle Corporation, 2001. All rights reserved.

[-12

Summary

PL/SQL is an extension to SQL.

Blocks of PL/SQL code are passed to and
processed by a PL/SQL engine.

Benefits of PL/SQL.:
Integration
Improved performance
Portability
Modularity of program development

Subprograms are named PL/SQL blocks, declared
as either procedures or functions.

You can invoke subprograms from different
environments.

ORACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

DeclaringMariables

Copyright © Oracle Corporation, 2001. All rights reserved.

1-2

Objectives

After completing this lesson, you should be able to
do the following:

Recognize the basic PL/SQL block and its sections
Describe the significance of variables in PL/SQL
Declare PL/SQL variables

Execute a PL/SQL block

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

1-3

PL/SQL Block Structure

DECLARE (Optional)
Variables, cursors, user-defined exceptions
BEG N (Mandatory)
— SQL statements

— PL/SQL statements
EXCEPTI ON (Optional)
Actions to perform when errors occur
END; (Mandatory)

Copyright © Oracle Corporation, 2001. All rights reserved.

ORACLE

Executing Statements and PL/SQL Blocks

DECLARE

v_variable VARCHAR2(5);
BEGQ N

SELECT col um_nane

| NTO v_vari abl e

FROMt abl e nane;
EXCEPTI ON

VWHEN excepti on_nanme THEN

END;

BEG N
[one |
EXCEPTI ON

(=]

END;

1-4 Copyright © Oracle Corporation, 2001. All rights reserved.

ORACLE

1-5

Anonymous

[DECLARE]

BEG N
--statenents

[EXCEPTI ON|

END;

Block Types

Procedure

PROCEDURE nane
| S

BEG N
--statenents

[EXCEPTI ON|

END;

Function

FUNCTI ON nane

RETURN dat at ype

| S

BEG N
--statenents
RETURN val ue;

[EXCEPTI ON]

END;

ORACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

Program Constructs

Tools Constructs

Anonymous blocks

Application proceduresor
functions

Application packages

Application triggers

Object types

DECLARE

[=]
BEG N

[2o]

EXCEPTI ON
I
END,

Database Server
Constructs

Anonymous blocks

Stored procedures or
functions

Stored packages

Databasetriggers

Object types

ORACLE

1-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Use of Variables

Variables can be used for:
Temporary storage of data
Manipulation of stored values
Reusability
Ease of maintenance

1-7 Copyright © Oracle Corporation, 2001. All rights reserved.

ORACLE

1-8

Handling Variables in PL/SQL

Declare and initialize variables in the declaration
section.

Assign new values to variables in the executable
section.

Pass values into PL/SQL blocks through
parameters.

View results through output variables.

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

1-9

Types of Variables

PL/SQL variables:
Scalar
Composite
Reference
LOB (large objects)

Non-PL/SQL variables: Bind and host variables

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

Using ISQL*Plus Variables Within PL/SQL
Blocks

PL/SQL does not have input or output capability of
Iits own.

You can reference substitution variables within a
PL/SQL block with a preceding ampersand.

ISQL*Plus host (or “bind”) variables can be used
to pass run time values out of the PL/SQL block
back to the ISQL*Plus environment.

ORACLE
1-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Types of Variables

—3] 25-JAN-01

“Four score and seven years ago

our fathers brought forth upon

this continent, a new nati on,

concei ved in LIBERTY, and dedi cated
to the proposition that all nen

are created equal .”

-

: 1%1 |
-l i T
b e N

T
giw. -1

e

ORACLE
1-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Declaring PL/SQL Variables

| dentifier [CONSTANT] datatype [NOT NULL]
= DEFAULT expr];

Examples:

DECLARE
v_hiredate DATE;
v_dept no NUMBER(2) NOT NULL := 10;

v_l ocation VARCHAR2(13) := "Atlanta';
c_comm CONSTANT NUMBER : = 1400;

ORACLE
1-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Guidelines for Declaring PL/SQL Variables

Follow naming conventions.

Initialize variables designated as NOT' NULL and
CONSTANT.

Declare one identifier per line.

Initialize identifiers by using the assignment
operator (: =) or the DEFAULT reserved word.

ORACLE
1-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Naming Rules

Two variables can have the same name, provided they
are in different blocks.

The variable name (identifier) should not be the same
as the name of table columns used in the block.

DECLARE
enpl oyee_id NUVBER(6);
BEG N

SELECT enpl oyee i d
| NTO enpl oyee i d

FROM enpl oyees

VWHERE | ast _nane = ' Kochhar';
END;
/

ORACLE
1-14 Copyright © Oracle Corporation, 2001. All rights reserved.

1-15

Variable Initialization and Keywords

Assignment operator (: =)
DEFAULT keyword
NOT NULL constraint

Syntax:
| denti fier :

Examples:
v_hiredate : = "'01-JAN- 2001";

ORACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

Scalar Data Types

Hold a single value
Have no internal components

25-0OCT-99

“Four score and seve
ago our fathers brough
forth upon this continent, a
new nation, conceived in

25612008 LI BERTY, and dedicated to

the proposition that all

are created gg
i v C

ORACLE
1-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Base Scalar Data Types

CHAR [(maxi num_| engt h) |
VARCHARZ2 (maxi num | engt h)
LONG

LONG RAW

NUMBER [(preci sion, scale)]
Bl NARY | NTEGER

PLS | NTEGER

BOOLEAN

ORACLE
1-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Base Scalar Data Types

DATE

TI MESTAMP

TI MESTAMP W TH TI ME ZONE

TI MESTAMP W TH LOCAL TI ME ZONE
| NTERVAL YEAR TO MONTH

| NTERVAL DAY TO SECOND

ORACLE
1-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Scalar Variable Declarations

Examples:

DECLARE
vV_job VARCHAR2(9) ;
v_count Bl NARY | NTEGER : = O;
v_total sal NUMBER(9, 2) : =

v_orderdate DATE : = SYSDATE + 7;
c tax rate CONSTANT NUMBER(3, 2) := 8. 25;
v_valid BOOLEAN NOT NULL : = TRUE;

ORACLE
1-22 Copyright © Oracle Corporation, 2001. All rights reserved.

1-23

The %' YPE Attribute

Declare a variable according to:

A database column definition

Another previously declared variable
Prefix % YPE with:

The database table and column

The previously declared variable name

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

Declaring Variables
with the %' YPE Attribute

Syntax:

| dentifier Tabl e. col um_nane%l YPE;

Examples:

V_nane enpl oyees. | ast _name%l YPE;

v_bal ance NUVBER(7, 2) ;
v_m n_bal ance v_bal anceYPE : = 10;

ORACLE
1-24 Copyright © Oracle Corporation, 2001. All rights reserved.

1-25

Declaring Boolean Variables

Only the values TRUE, FALSE, and NULL can be
assigned to a Boolean variable.

The variables are compared by the logical
operators AND, OR, and NOT.

The variables always yield TRUE, FALSE, or NULL.

Arithmetic, character, and date expressions can be
used to return a Boolean value.

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

1-26

Composite Data Types

TRUE | 23- DEC-98 | ATLANTA

PL/SQL table structure PL/SQL table structure
1 SM TH 1 5000
2 JONES 2 2345
3 NANCY 3 12
4 TIM 4 3456
L VARCHAR2 L NUVBER
Bl NARY | NTEGER Bl NARY | NTEGER
RACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

LOB Data Type Variables

Book
(CLOB)

Photo
(BLOB)

Movie
(BFI LE)

o~
18 g NCLOB

ORACLE

1-27 Copyright © Oracle Corporation, 2001. All rights reserved.

1-28

Bind Variables

O/S

Bind variable

Copyright © Oracle Corporation, 2001. All rights reserved.

Using Bind Variables

To reference a bind variable in PL/SQL, you must
prefix its name with a colon (:).

Example:

VARI ABLE g_sal ary NUMBER
BEG N

SELECT sal ary

| NTO . g_sal ary

FROM enpl oyees

VWHERE enpl oyee i d 178;
END;
/
PRI NT g sal ary

ORACLE
1-30 Copyright © Oracle Corporation, 2001. All rights reserved.

1-31

Referencing Non-PL/SQL Variables

Store the annual salary into a iISQL*Plus host
variable.

g nmonthly sal := v _sal [/ 12

Reference non-PL/SQL variables as host
variables.

Prefix the references with a colon (:).

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

DBMS_OUTPUT. PUT_LI NE

An Oracle-supplied packaged procedure
An alternative for displaying data from a PL/SQL block

Must be enabled in iSQL*Plus with
SET SERVEROUTPUT ON

SET SERVEROUTPUT ON
DEFI NE p_annual sal = 60000

DECLARE

v_sal NUMBER(9, 2) := &p _annual sal;
BEGQ N

v_sal := v _sal/12;
DBMS OUTPUT. PUT_LINE (' The nonthly salary is ' ||
TO CHAR(v_sal));

END;
/

ORACLE
1-32 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

In this lesson you should have learned that:

* PL/SQL blocks are composed of the following
sections:
— Declarative (optional)

— Executable (required)

— Exception handling (optional) I ARE
°* A PL/SQL block can be an anonymous | EECEEE
block, procedure, or function. BEG N
I

EXCEPTI ON
[]

END;

ORACLE
1-33 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

In this lesson you should have learned that:
PL/SQL identifiers:

Are defined in the declarative section
Can be of scalar, composite, reference, or LOB data
type

Can be based on the structure of another variable
or database object

Can be initialized

Variables declared in an external environment
such as ISQL*Plus are called host variables.

Use DBMS OUTPUT. PUT_LI NEto display data from
a PL/SQL block.

ORACLE
1-34 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 1 Overview

This practice covers the following topics:
Determining validity of declarations
Declaring a simple PL/SQL block
Executing a simple PL/SQL block

ORACLE
1-35 Copyright © Oracle Corporation, 2001. All rights reserved.

Writing ExecutablédStatements

Copyright © Oracle Corporation, 2001. All rights reserved.

2-2

Objectives

After completing this lesson, you should be able to
do the following:

Describe the significance of the executable
section

Use identifiers correctly

Write statements in the executable section
Describe the rules of nested blocks
Execute and test a PL/SQL block

Use coding conventions

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

2-3

PL/SQL Block Syntax and Guidelines

Statements can continue over several lines.

Lexical units can be classified as:
Delimiters
Identifiers
Literals
Comments

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

2-5

ldentifiers

Can contain up to 30 characters
Must begin with an alphabetic character

Can contain numerals, dollar signs, underscores,
and number signs

Cannot contain characters such as hyphens,
slashes, and spaces

Should not have the same name as a database
table column name

Should not be reserved words

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

2-6

PL/SQL Block Syntax and Guidelines

Literals

Character and date literals must be enclosed Iin
single quotation marks.

' Hender son' ;

Numbers can be simple values or scientific
notation.

A slash (/) runs the PL/SQL block in a script file
or in some tools such as ISQL*PLUS.

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

2-7

Commenting Code

Prefix single-line comments with two dashes (- -).

Place multiple-line comments between the symbols
[* and */.

Example:

DECLARE

v_sal NUMBER (9, 2);
BEGQ N
/* Conpute the annual salary based on the

nonthly salary input fromthe user */
v_sal := :g nonthly sal * 12;
END; -- This is the end of the bl ock

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

SQL Functions in PL/SQL

Available in procedural statements:
Single-row number
Single-row character
Data type conversion
Date
Timestamp
GREATEST and LEAST

Miscellaneous functions

Same as in SQL

Not available in procedural statements:
DECODE

Group functions

ORACLE
2-8 Copyright © Oracle Corporation, 2001. All rights reserved.

2-9

SQL Functions in PL/SQL: Examples

Build the mailing list for a company.

v_mailing address := v_nane|| CHR(10)| |

v_address| | CHR(10)| | v_state]|
CHR(10) | | v_zi p;

Convert the employee name to lowercase.

.= LONER(Vv_enane) ;

ORACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

Data Type Conversion

Convert data to comparable data types.

Mixed data types can result in an error and affect
performance.

Conversion functions:
TO CHAR
TO DATE
TO NUVBER

DECLARE
v_date DATE := TO DATE(' 12- JAN- 2001', ' DD MON- YYYY');

BEG N

ORACLE
2-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Data Type Conversion

This statement produces a compilation error if the
variable v_dat e is declared as a DATE data type.

v_date := 'January 13, 2001';

ORACLE
2-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Data Type Conversion

To correct the error, use the TO DATE conversion
function.

.= TO DATE (' January 13, 2001',

‘Month DD, YYYY');

ORACLE
2-12 Copyright © Oracle Corporation, 2001. All rights reserved.

2-13

Nested Blocks
and Variable Scope

PL/SQL blocks can be nested wherever an
executable statement is allowed.

A nested block becomes a statement.
An exception section can contain nested blocks.

The scope of an identifier is that region of a
program unit (block, subprogram, or package)
from which you can reference the identifier.

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

Nested Blocks and Variable Scope

Example:

X Bl NARY_| NTECER;

BEG N
Scope of x

DECLARE
y NUMBER,

BEG N

Scope of y

ORACLE
2-14 Copyright © Oracle Corporation, 2001. All rights reserved.

ldentifier Scope

An identifier is visible in the regions where you can
reference the identifier without having to qualify it:

A block can look up to the enclosing block.
A block cannot look down to enclosed blocks.

ORACLE
2-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Qualify an Identifier

The qualifier can be the label of an enclosing
block.

Qualify an identifier by using the block label prefix.

<<out er >>
DECLARE
bi rt hdat e DATE;
BEG N
DECLARE
bi rt hdat e DATE;
BEG N

outer.birthdate : =
TO DATE(' 03- AUG- 1976'
' DD- MON- YYYY') ;

END;

END;
ORACLE
2-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Determining Variable Scope

Class Exercise
<<out er >>

DECLARE
v_sal NUMBER(7, 2) : = 60000;
v_comm NUVMBER(7,2) := v_sal * 0.20;
v_nmessage VARCHAR2(255) :="' eligible for comm ssion';
BEG N
DECLARE
v_sal NUMBER(7, 2) := 50000;

v_conmm NUMBER(7, 2) := O;

v_total conmp NUMBER(7,2) := v_sal + v_comm
BEG N
v_nessage := 'CLERK not'||v_nessage;
outer.v_comm := v_sal * 0. 30;
>

END:
v_nmessage := ' SALESMAN | | v_nessage;

ORACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

Operators in PL/SQL

Logical
Arithmetic
Concatenation Same as in SQL

Parentheses to control order
of operations

Exponential operator (**)

ORACLE
2-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Operators in PL/SQL

Examples:
Increment the counter for a loop.

v_count .= v_count + 1;

Set the value of a Boolean flag.

Validate whether an employee number contains a
value.

v_valid = (v_enpno |I'S NOT NULL);

ORACLE
2-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Programming Guidelines

Make code maintenance easier by:
Documenting code with comments
Developing a case convention for the code

Developing naming conventions for identifiers and
other objects

Enhancing readability by indenting

ORACLE
2-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Indenting Code

For clarity, indent each level of code.

Example:
DECLARE

v_dept no NUVBER(4) ;
v_location_id NUVBER(4);
BEGQ N
SELECT departnent id,
| ocation_id
| NTO v_dept no,
v_|location_id
FROM depart nments
VWHERE depart nent nane
= 'Sal es';

BEG N
| F x=0 THEN

END;
/

ORACLE
2-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

In this lesson you should have learned that:
PL/SQL block syntax and guidelines
How to use identifiers correctly

PL/SQL block structure: nesting blocks and
scoping rules

PL/SQL programming: DECL ARE
Functions ICER.
. BEG N
Data type conversions [ees |

Operators EXCEPTI ON

ICEER

Conventions and guidelines
END;

ORACLE
2-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 2 Overview

This practice covers the following topics:
Reviewing scoping and nesting rules
Developing and testing PL/SQL blocks

ORACLE
2-23 Copyright © Oracle Corporation, 2001. All rights reserved.

ith
ver

Interacty
the Ora

Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

Write a successful SELECT statement in PL/SQL
Write DML statements in PL/SQL
Control transactions in PL/SQL

Determine the outcome of SQL data manipulation
language (DML) statements

ORACLE
3-2 Copyright © Oracle Corporation, 2001. All rights reserved.

3-3

SQL Statements in PL/SQL

Extract a row of data from the database by using
the SELECT command.

Make changes to rows in the database by using
DML commands.

Control a transaction with the COVWM T, ROLLBACK,
or SAVEPO NT command.

Determine DML outcome with implicit cursor
attributes.

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

3-4

SELECT Statements in PL/SQL

Retrieve data from the database with a SELECT
statement.

Syntax:

SELECT select i st
| NTO {vari abl e_nane[, vari abl e _nane]...
| record_nane}

FROM t abl e
[WHERE condition];

ORACLE ||
Copyright © Oracle Corporation, 2001. All rights reserved.

3-6

SELECT Statements in PL/SQL

The | NTOclause is required.

Queries must return one and only one row.

Example:
DECLARE

v_dept no NUMBER(4) ;
v _location_id NUMBER(4) ;
BEGQ N
SELECT departnment i1d, location_ id

| NTO v_deptno, v location_id
FROM depart nents
VHERE departnent _nane = ' Sal es';
END;
/

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

3-7

Retrieving Data in PL/SQL

Retrieve the hire date and the salary for the specified
employee.

Example:

DECLARE

v_hire date enpl oyees. hire_dat e%l YPE;

v_sal ary enpl oyees. sal ar y% YPE;
BEG N

SELECT hire date, salary

| NTO v_hire date, v_salary

FROM enpl oyees

VWHERE enpl oyee_id 100;

END;
/

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

3-8

Retrieving Data in PL/SQL

Return the sum of the salaries for all employees in
the specified department.

Example:

SET SERVERQUTPUT ON

DECLARE

vV_sum sal NUMBER(10, 2) ;
v_dept no NUVBER NOT NULL : = 60;
BEGQ N

SELECT SUM sal ary) -- group function
I NTO
FROM enpl oyees

VWHERE departnent id = v_deptno;
DBMS QUTPUT. PUT_LINE (' The sumsalary is ' ||
TO CHAR(v_sum sal));

END;
/

ORACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

3-9

Naming Conventions

DECLARE
hire date enpl oyees. hi re_dat e%d YPE;
sysdat e hi re_dat e%d YPE;
enpl oyee id enpl oyees. enpl oyee | d%YPE
BEGQ N
SELECT hire date, sysdate
| NTO hire date, sysdate
FROM enpl oyees
VWHERE enpl oyee id = enpl oyee id;
END;

DECLAEE

k

act fetch returns more than recuested number of rows

“at line &

Copyright © Oracle Corporation, 2001. All rights reserved.

= 176;

ORACLE

3-10

Manipulating Data Using PL/SQL

Make changes to database tables by using DML
commands:

| NSERT
UPDATE w
DELETE
VERGE W

ORACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

Inserting Data

Add new employee information to the EMPLOYEES
table.

Example:

BEGQ N
| NSERT | NTO enpl oyees
(enpl oyee id, first _nanme, |ast _nane, enail,
hire date, job id, salary)
VALUES

(enpl oyees_seq. NEXTVAL, 'Ruth', 'Cores', 'RCORES,
sysdate, 'AD ASST', 4000);

END,

/

ORACLE
3-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Updating Data

Increase the salary of all employees who are stock
clerks.

Example:

DECLARE

v_sal increase enpl oyees. sal ary%YPE : = 800;
BEGQ N

UPDATE enpl oyees

SET sal ary salary + v_sal increase
VWHERE job_id ' ST CLERK ;

END,

/

ORACLE
3-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Deleting Data

Delete rows that belong to department 10 from the
EMPLOYEES table.

Example:

DECLARE
v_dept no enpl oyees. departnent i d%YPE : = 10;
BEG N

DELETE FROM enpl oyees

VWHERE departnent _id = v_deptno;
END;
/

ORACLE
3-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Merging Rows

Insert or update rows in the COPY_EMP table to match
the EMPLOYEES table.

DECLARE
v_enpno enpl oyees. enpl oyee 1 d%WYPE : = 100;
BEG N
MERGE | NTO copy_enp c
USI NG enpl oyees e
ON (e.enployee id = v_enpno)
VWHEN MATCHED THEN
UPDATE SET
c.first_nane e.first _nane,
c.last _nane e. |l ast _nane,
c.email e.email,

VWHEN NOT MATCHED THEN
| NSERT VALUES(e. enpl oyee id, e.first_nane,
., e.departnent id);

END;

ORACLE
3-14 Copyright © Oracle Corporation, 2001. All rights reserved.

3-16

Naming Conventions

Use a naming convention to avoid ambiguity in the
VWHERE clause.

Database columns and identifiers should have
distinct names.

Syntax errors can arise because PL/SQL checks
the database first for a column in the table.

The names of local variables and formal
parameters take precedence over the names of
database tables.

The names of database table columns take
precedence over the names of local variables.

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

SQL Cursor

A cursor is a private SQL work area.

There are two types of cursors:
Implicit cursors
Explicit cursors

The Oracle server uses implicit cursors to parse
and execute your SQL statements.

Explicit cursors are explicitly declared by the
programmer.

ORACLE
3-18 Copyright © Oracle Corporation, 2001. All rights reserved.

SQL Cursor Attributes

Using SQL cursor attributes, you can test the
outcome of your SQL statements.

SQLYROWCOUNT Number of rows affected by the
most recent SQL statement (an
Integer value)

SQL%-CUND Boolean attribute that evaluates to
TRUE if the most recent SQL
statement affects one or more rows

SQLYANOTFOUND Boolean attribute that evaluates to
TRUE if the most recent SQL

statement does not affect any rows

SQL% SOPEN Always evaluates to FALSE because

PL/SQL closes implicit cursors
Immediately after they are executed

ORACLE
3-19 Copyright © Oracle Corporation, 2001. All rights reserved.

SQL Cursor Attributes

Delete rows that have the specified employee ID from
the EMPLOYEES table. Print the number of rows

deleted.
Example:

VARI ABLE rows del et ed VARCHAR2(30)
DECLARE

v_enpl oyee i d enpl oyees. enpl oyee i d%WYPE .= 176;
BEQ N

DELETE FROM enpl oyees

VWHERE enpl oyee id = v_enpl oyee id;

:rows_del eted : = (SQLYRONCOUNT | |
' row deleted."');

END;
/
PRI NT rows_del et ed

ORACLE
3-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Transaction Control Statements

Initiate a transaction with the first DML command
to follow a COVM T or ROLLBACK.

Use COMM T and ROLLBACK SQL statements to
terminate a transaction explicitly.

ORACLE

3-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

In this lesson you should have learned how to:

Embed SQL in the PL/SQL block using SELECT,
| NSERT, UPDATE, DELETE, and MERGE

Embed transaction control statements in a PL/SQL
block COVW T, ROLLBACK, and SAVEPQO NT

ORACLE
3-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

In this lesson you should have learned that:
There are two cursor types: implicit and explicit.

Implicit cursor attributes are used to verify the
outcome of DML statements:

SQLYRONCOUNT
SQLY%OUND
SQLYNOTFOUND
SQL% SOPEN

Explicit cursors are defined by the programmer.

ORACLE
3-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 3 Overview

This practice covers creating a PL/SQL block to:
Select data from a table

Insert data into a table
Update data in a table
Delete arecord from a table

ORACLE
3-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Writing Cog tructures

Copyright © Oracle Corporation, 2001. All rights reserved.

4-2

Objectives

After completing this lesson, you should be able to
do the following:

ldentify the uses and types of control structures
Construct an | F statement

Use CASE expressions

Construct and identify different loop statements
Use logic tables

Control block flow using nested loops and labels

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

Controlling PL/SQL Flow of Execution

You can change the logical execution of
statements using conditional | F statements and

loop control structures.
Conditional | F statements:
| F- THEN- END | F
| F- THEN- ELSE- END | F

| F- THEN- ELSI F-END | F ‘

ORACLE
4-3 Copyright © Oracle Corporation, 2001. All rights reserved.

| F Statements

Syntax:

| F condi ti on THEN
st at enent s;

[ELSI F condition THEN
statenents; |

[ELSE

stat enents; |
END | F;

If the employee name is Gietz, set the Manager ID to
102.

| F UPPER(v | ast _nane) = 'd ETZ' THEN
v_ngr = 102;

END | F;

ORACLE
4-4 Copyright © Oracle Corporation, 2001. All rights reserved.

4-5

Simple IF Statements

If the last name is Vargas:
Set job IDto SA_REP
Set department number to 80

| F v_enane ' Vargas' THEN
v_job .= ' SA REFP';

v_dept no . = 80;
END | F;

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

Compound IF Statements

If the last name is Vargas and the salary is more than
6500:

Set department number to 60.

| F v_enane = 'Vargas' AND salary > 6500 THEN

v_deptno : = 60;
END | F;

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

| F- THEN- ELSE Statement Execution Flow

TRUE

|

THEN actions
(including further | F
statements)

| F condition

NOI' TRUE

|

-

_

ELSE actions
(including further | F
statements)

ORACLE

4-7 Copyright © Oracle Corporation, 2001. All rights reserved.

4-8

| F- THEN- ELSE Statements

Set a Boolean flag to TRUE if the hire date is greater
than five years; otherwise, set the Boolean flag to

FALSE.

DECLARE
v_hire date DATE := "'12-Dec-1990';
v_five years BOCLEAN,

BEG N

| F MONTHS_BETWEEN(SYSDATE, v_hire_date)/ 12 > 5 THEN

v_five years := TRUE
ELSE

v_five years := FALSE;
END | F;

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

4-9

Statement Execution Flow

l TRUE

THEN actions

\

| F- THEN- ELSI F

| F condition

TRUE (

s

THEN actions

4

NOT TRUE

ELSI F
condition

ELSE
actions

l

Copyright © Oracle Corporation, 2001. All rights reserved.

|

ORACLE

4-11

IF-THEN-ELSIF Statements

For a given value, calculate a percentage of that value
based on a condition.

Example:

| F v_start > 100 THEN
v_start := 0.2 * v_start;
ELSIF v_start >= 50 THEN

v_start := 0.5 * v_start,;
ELSE

v start := 0.1 * v_start;
END | F;

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

4-12

CASE Expressions

A CASE expression selects a result and returns it.

To select the result, the CASE expression uses an

expression whose value is used to select one of
several alternatives.

CASE sel ect or
VWHEN expressionl THEN resultl
VWHEN expressi on2 THEN resul t 2

VWHEN expressi onN THEN resul t N
[ELSE resul t N+1;]
END;

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

CASE Expressions: Example

SET SERVEROUTPUT ON
DECLARE
v_grade CHAR(1l) := UPPER(' &p grade');
v_apprai sal VARCHAR2(20);
BEGQ N
v_appraisal :=
CASE v _grade
VWHEN " A" THEN ' Excel | ent"’
VWHEN ' B° THEN ' Very Good’
VWHEN ' C THEN ' Good'
ELSE ' No such grade'
END;
DBVMS QUTPUT. PUT _LINE (' Gade: '|| v_grade ||
Appraisal ' || v_appraisal);
END;
/

ORACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

Handling Nulls

When working with nulls, you can avoid some
common mistakes by keeping in mind the following
rules:

Simple comparisons involving nulls always yield
NULL.

Applying the logical operator NOT to a null yields
NULL.

In conditional control statements, if the condition
yields NULL, its associated sequence of

statements is not executed.

ORACLE
4-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Logic Tables

Build a simple Boolean condition with a comparison

OR | TRUE |FALSE | NULL

operator.

FALSE | NULL

AND

.
TRUE | TRUE |FALSE | NULL @ TRUE | TRUE | TRUE | TRUE
FALSE |FALSE |FALSE |[FALSE@FALSE | TRUE |FALSE | NULL

TRUE | FALSE

FALSE | TRUE
NULL | NULL

ORACLE

NULL | NULL |FALSE | NULL

4-16 Copyright © Oracle Corporation, 2001. All rights reserved.

NULL | TRUE | NULL

Boolean Conditions

What is the value of V_FLAGIn each case?

v_flag := v_reorder_flag AND v_avail abl e_f 1| ag;

V_REORDER FLAG V_AVAI LABLE FLAG V_FLAG

ORACLE
4-17 Copyright © Oracle Corporation, 2001. All rights reserved.

4-18

Ilterative Control: LOOP Statements

Loops repeat a statement or sequence of
statements multiple times.

There are three loop types:

Basic loop
FORloop

VWH LE loop

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

Basic Loops

Syntax:

L OOP delimter
st at enent 1;

statenents

EXIT [WHEN condi tion]; EXI'T statenent
SN0 HOG del i miter

condi ti on | S a Bool ean vari abl e or
expression (TRUE, FALSE, or NULL);

ORACLE
4-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Basic Loops
Example:

DECLARE
v_country id | ocations. country id%WYPE :="CA;
v_location_id | ocations. | ocation_ i d%YPE;
v_count er NUMBER(2) := 1;
V. City | ocations.city%YPE : = 'Montreal ';
BEG N
SELECT MAX(l ocation_id) INTOv location_id FROM | ocati ons
VWHERE country id = v_country_id;
L OOP
| NSERT | NTO | ocations(location_id, city, country id)
VALUES((v_location_id + v_counter),v_ city, v_country id);
v_counter := v_counter + 1;
EXIT WHEN v_counter > 3;
END LOOP;
END;
/

ORACLE
4-20 Copyright © Oracle Corporation, 2001. All rights reserved.

VHI LE Loops

Syntax:

VH LE condition LOOP «=——— Condition is
st at enent 1;
st at enent 2;

evaluated at the
beginning of
each iteration.

END LQOOP;

Use the VWHI LE loop to repeat statements while a
condition is TRUE.

ORACLE
4-21 Copyright © Oracle Corporation, 2001. All rights reserved.

VHI LE Loops

Example:

DECLARE
v_country id | ocations. country i d%WYPE := "'CA";
v_location_id | ocati ons. | ocation_i d%I'YPE;

V_City | ocations.city%YPE : = ' Montreal ' ;
v_counter NUMBER : = 1;
BEG N

SELECT MAX(l ocation_id) INTO v location_id FROM | ocati ons
VWHERE country id = v_country_id;

VWH LE v_counter <= 3 LOOP
| NSERT | NTO | ocations(location_id, city, country id)
VALUES((v_l ocation_id + v_counter), v city, v_country id);
v_counter := v_counter + 1;
END LOOP;
END;
/

ORACLE
4-22 Copyright © Oracle Corporation, 2001. All rights reserved.

FORLoops

Syntax:

FOR counter | N [REVERSE]
| ower bound. . upper bound LOCP
st at enent 1;
st at enent 2;

END LOCP,

Use a FOR loop to shortcut the test for the number
of iterations.

Do not declare the counter; it is declared
implicitly.

'l ower _bound .. upper_ bound'is required
syntax.

ORACLE
4-23 Copyright © Oracle Corporation, 2001. All rights reserved.

FORLoops

Insert three new locations IDs for the country code of CA
and the city of Montreal.

DECLARE
v_country id | ocati ons. country i d%WYPE : ="
v_location_id | ocations. | ocation_i d%lYPE;
V. .City | ocations.city%YPE : = 'Montreal ';
BEG N
SELECT MAX(l ocation_id) INTO v |ocation_id
FROM | ocati ons

VWHERE country id = v_country i d;
FORi IN1..3 LOOP
| NSERT | NTO | ocations(location_id, city, country_id)
VALUES((v_location id + i), v city, v_country id);
END LQOOP;
END;
/

ORACLE
4-24 Copyright © Oracle Corporation, 2001. All rights reserved.

FORLoops

Guidelines

Reference the counter within the loop only; it is
undefined outside the loop.

Do not reference the counter as the target of an
assignment.

ORACLE
4-25 Copyright © Oracle Corporation, 2001. All rights reserved.

Guidelines While Using Loops

Use the basic loop when the statements inside the
loop must execute at least once.

Use the WHI LE loop if the condition has to be
evaluated at the start of each iteration.

Use a FOR loop if the number of iterations is known.

ORACLE
4-26 Copyright © Oracle Corporation, 2001. All rights reserved.

Nested Loops and Labels

Nest loops to multiple levels.

Use labels to distinguish between blocks and
loops.

Exit the outer loop with the EXI T statement that
references the label.

ORACLE
4-27 Copyright © Oracle Corporation, 2001. All rights reserved.

Nested Loops and Labels

BEGI N
<<Quter | oop>>

L OOP

v_counter := v_counter+1,
EXIT WHEN v_count er >10;

<<| nner _| oop>>

L OOP

EXIT Quter | oop WHEN total done = 'YES' ;
-- Leave both | oops

EXIT WHEN | nner _done = "' YES';

-- Leave inner | oop only

ENb.LOOP | nner _| oop;

ENb.LOOP Qut er _| oop;
END;

ORACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

In this lesson you should have learned to:

Change the logical flow of statements by using
control structures.

Conditional (I F statement)
CASE Expressions
Loops:

Basic loop

FORloop
VWH LE loop

EXI T statements

ORACLE
4-29 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 4 Overview

This practice covers the following topics:

Performing conditional actions using the | F
statement

Performing iterative steps using the loop structure

ORACLE
4-30 Copyright © Oracle Corporation, 2001. All rights reserved.

Working
Data Typ

mposite

Copyright © Oracle Corporation, 2001. All rights reserved.

5-2

Objectives

After completing this lesson, you should be able to
do the following:

Create user-defined PL/SQL records

Create a record with the “ROM YPE attribute
Create an | NDEX BY table

Create an | NDEX BY table of records

Describe the difference between records, tables,
and tables of records

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

5-3

Composite Data Types

Are of two types:
PL/SQL RECORDs

PL/SQL Collections
| NDEX BY Table

Nested Table
\V/A\R37:\'4

Contain internal components
Are reusable

Copyright © Oracle Corporation, 2001. All rights reserved.

ORACLE

5-4

PL/SQL Records

Must contain one or more components of any scalar,
RECORD, or | NDEX BY table data type, called fields

Are similar in structure to records in a third
generation language (3GL)

Are not the same as rows In a database table
Treat a collection of fields as a logical unit

Are convenient for fetching a row of data from a table
for processing

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

5-5

Creating a PL/SQL Record

Syntax:

TYPE type nanme | S RECORD

(field declaration[, field declaration].);
| dentifier t ype nane;

Where field _declaration is:
field nanme {field type | vari abl e%dYPE

| tabl e.colum%YPE | tabl e¥dROMYPE}
[[NOT NULL] {:=| DEFAULT} expr]

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

5-6

Creating a PL/SQL Record

Declare variables to store the name, job, and salary of
a new employee.

Example:

TYPE enp _record type |'S RECORD
(l ast _nane VARCHARZ2(25) ,
job_id VARCHAR2(10) ,

sal ary NUVBER(8, 2)) ;
enp_record enp_record type;

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

PL/SQL Record Structure

Fieldl (data type) Field2 (datatype) Field3 (dataty

Example:

Fieldl (datatype) Field2 (datatype) Field3 (datatyp
employee_id number(6) last_name varchar2(25) job_id varchar2(l

King PN —

5-7 Copyright © Oracle Corporation, 2001. All rights reserved.

5-8

The Y“ROM YPE Attribute

Declare a variable according to a collection of
columns in a database table or view.

Prefix “ROM YPE with the database table.

Fields in the record take their names and data
types from the columns of the table or view.

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

Advantages of Using YROM YPE

The number and data types of the underlying
database columns need not be known.

The number and data types of the underlying
database column may change at run time.

The attribute is useful when retrieving a row with
the SELECT * statement.

ORACLE
5-10 Copyright © Oracle Corporation, 2001. All rights reserved.

The “ROMYPE Attribute

Examples:

Declare a variable to store the information about a
department from the DEPARTMENTS table.

dept record depart ment s¥“ROM YPE;

Declare a variable to store the information about an
employee from the EMPLOYEES table.

enp_record enpl oyees YiROM YPE;

ORACLE
5-11 Copyright © Oracle Corporation, 2001. All rights reserved.

| NDEX BY Tables

Are composed of two components:
Primary key of data type Bl NARY | NTEGER

Column of scalar or record data type

Can increase in size dynamically because they are
unconstrained

ORACLE
5-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating an | NDEXBY Table

Syntax:

TYPE type nane |S TABLE OF
{colum_type | vari abl e%dYPE
| table.colum%YPE} [NOT NULL]

| tabl e. YROANTYPE
[| NDEX BY Bl NARY_| NTEGER] ;

| dentifier t ype_ nane;
Declare an | NDEX BY table to store names.
Example:

TYPE enane_table type IS TABLE OF
enpl oyees. | ast _nane%l YPE

| NDEX BY Bl NARY | NTEGER;
enane_t abl e enane_tabl e type;

ORACLE
5-14 Copyright © Oracle Corporation, 2001. All rights reserved.

| NDEX BY Table Structure

Unique identifier Column

Jones
Smith

Maduro

Bl NARY | NTEGER Scalar

ORACLE
5-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating an | NDEX BY Table

DECLARE

TYPE enane _table type IS TABLE OF
enpl oyees. | ast _name%l YPE
| NDEX BY BI NARY | NTEGER;

TYPE hiredate table type IS TABLE OF DATE
| NDEX BY BI NARY | NTEGER;

enane_t abl e enane_t abl e _type;

hi redate_tabl e hi redat e tabl e type;

BEG N
enane_t abl e(1) . = " CAMERON
hi redate tabl e(8) := SYSDATE + 7;

| F enane_t abl e. EXI STS(1) THEN
| NSERT | NTO . ..

Copyright © Oracle Corporation, 2001. All rights reserved.

ORACLE

Using | NDEX BY Table Methods

The following methods make INDEX BY tables
easier to use:

EXI STS NEXT
COUNT TRI'M
FI RST and LAST DELETE
PRI OR

ORACLE
5-17 Copyright © Oracle Corporation, 2001. All rights reserved.

| NDEX BY Table of Records

Define a TABLE variable with a permitted PL/SQL
data type.

Declare a PL/SQL variable to hold department
Information.

Example:

DECLARE
TYPE dept table type IS TABLE OF
depar t nent s%ROM YPE

| NDEX BY BI NARY | NTECER,
dept _tabl e dept table type;
-- Each el enent of dept table is a record

ORACLE
5-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Example of | NDEX BY Table of Records

SET SERVEROUTPUT ON
DECLARE
TYPE enp table type is tabl e of
enpl oyees%ROMYPE | NDEX BY Bl NARY | NTEGER;
ny _enp_table enp table type;
v_count NUMBER(3) : = 104;
BEQ N
FOR i IN 100..v_count
LOOP

SELECT * INTO ny_enp _table(i) FROM enpl oyees
VWHERE enpl oyee id = i;
END LOOP;
FOR I INnNny enp table. FIRST..ny enp table. LAST
LOOP

DBV OUTPUT. PUT_LINE(ny _enp_table(i).last _nane);
END LOOP;
END;

ORACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

In this lesson, you should have learned to:

Define and reference PL/SQL variables of
composite data types:

PL/SQL records
| NDEX BY tables

| NDEX BY table of records

Define a PL/SQL record by using the YROM YPE
attribute

ORACLE
5-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 5 Overview

This practice covers the following topics:
Declaring | NDEX BY tables

Processing data by using | NDEX BY tables

Declaring a PL/SQL record
Processing data by using a PL/SQL record

ORACLE
5-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Writing ursors

Copyright © Oracle Corporation, 2001. All rights reserved.

6-2

Objectives

After completing this lesson, you should be able to
do the following:

Distinguish between an implicit and an explicit
cursor

Discuss when and why to use an explicit cursor
Use a PL/SQL record variable
Write a cursor FOR loop

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

About Cursors

Every SQL statement executed by the Oracle Server
has an individual cursor associated with it:

Implicit cursors: Declared for all DML and PL/SQL
SELECT statements

Explicit cursors: Declared and named by the
programmer

ORACLE
6-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Explicit Cursor Functions
Table

100 Ki ng AD PRES
101 Kochhar AD VP
102 De Haan AD VP

Active set

Cursor

139 Seo ST _CLERK
140 Patel ST CLERK

ORACLE
6-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Controlling Explicit Cursors

DECLARE pmmd OPEN |[mmd FETCH

* Createa ° ldentify * Load the * Test for * Release
named the active current existing the active
SQL area set row into rows set

variables e Return to
FETCH if
rows are
found
ORACLE

6-5 Copyright © Oracle Corporation, 2001. All rights reserved.

6-6

Controlling Explicit Cursors

2. Fetch arow
3. Close the Cursor

1. Open the cursor.

Cursor
pointer

Copyright © Oracle Corporation, 2001. All rights reserved.

ORACLE

6-7

Controlling Explicit Cursors

1. Open the cursor

3. Close the Cursor

2. Fetch arow using the cursor.

Cursor
pointer

Continue until empty.

Copyright © Oracle Corporation, 2001. All rights reserved.

ORACLE

6-8

Controlling Explicit Cursors

1. Open the cursor
2. Fetch arow

3. Close the cursor.

Cursor
pointer

Copyright © Oracle Corporation, 2001. All rights reserved.

ORACLE

6-9

Declaring the Cursor

Syntax:

CURSOR cursor _nane |S

sel ect _statenent;

Do not include the | NTOclause in the cursor
declaration.

If processing rows in a specific sequence is
required, use the ORDER BY clause in the query.

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

Declaring the Cursor

Example:

DECLARE
CURSOR enp_cursor IS
SELECT enpl oyee id, |ast_nane
FROM enpl oyees;

CURSOR dept _cursor |S

SELECT *

FROM departnents

VWHERE | ocation id = 170;
BEG N

ORACLE
6-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Opening the Cursor

Syntax:

OPEN cursor_nane;

Open the cursor to execute the query and identify
the active set.

If the query returns no rows, no exception is
raised.

Use cursor attributes to test the outcome after a
fetch.

ORACLE
6-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Fetching Data from the Cursor

Syntax:

FETCH cursor_nane |INTO [vari abl el, vari abl e2,

| record_nane];

Retrieve the current row values into variables.
Include the same number of variables.

Match each variable to correspond to the columns
positionally.

Test to see whether the cursor contains rows.

ORACLE
6-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Fetching Data from the Cursor

Example:
LOOP

FETCH enp_cursor | NTO v_enpno, v_enane;
EXIT WHEN . . . ;

-- Process the retrieved data

END LOCP;

ORACLE
6-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Closing the Cursor

Syntax:

CLOSE cur sor _nane,

Close the cursor after completing the processing
of the rows.

Reopen the cursor, if required.

Do not attempt to fetch data from a cursor after it
has been closed.

ORACLE
6-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Explicit Cursor Attributes

Obtain status information about a cursor.

Attribute Description

% SOPEN Boolean | Evaluates to TRUE if the cursor
IS open

%NOTF(JJND Boolean Evaluates to TRUE if the most
recent fetch does not return a row

C%F(lJND Boolean Evaluates to TRUE if the most
recent fetch returns a row:;
complement of %NOTFOUND

OFROWNCOUNT Number Evaluates to the total number of
rows returned so far

ORACLE

6-15 Copyright © Oracle Corporation, 2001. All rights reserved.

The % SOPEN Attribute

Fetch rows only when the cursor is open.

Use the %4 SOPENcursor attribute before
performing a fetch to test whether the cursor is
open.

Example:

| F NOT enp_cur sor % SOPEN THEN
OPEN enp_cursor;

END | F;
LOCOP
FETCH enp_cursor...

ORACLE
6-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Controlling Multiple Fetches

Process several rows from an explicit cursor using
aloop.

Fetch a row with each iteration.

Use explicit cursor attributes to test the success
of each fetch.

ORACLE
6-17 Copyright © Oracle Corporation, 2001. All rights reserved.

The YNOTFOUND
and YRONCOUNT Attributes

Use the YRONCOUNT cursor attribute to retrieve an
exact number of rows.
Use the “WNOTFQOUND cursor attribute to determine
when to exit the loop.

ORACLE

6-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Example

DECLARE
v_enpno enpl oyees. enpl oyee | d%YPE;
v_enane enployees.|ast nane% YPE;
CURSOR enp_cursor |IS
SELECT enpl oyee id, |ast_nane
FROM enpl oyees;
BEG N
OPEN enp_cursor;
LOOP
FETCH enp_cursor | NTO v_enpno, Vv_enane,
EXIT WHEN enp_cur sor “RONCOUNT > 10 OR
enp_cur sor YINOTFOUND;
DBMS OQUTPUT. PUT_LINE (TO CHAR(Vv_enpno)
[[" "Il v_enane);
END LQOOP;
CLOSE enp_cursor;
END ;

ORACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

Cursors and Records

Process the rows of the active set by fetching values
into a PL/SQL RECORD.

DECLARE
CURSOR enp_cursor | S
SELECT enpl oyee id, |ast_nane
FROM enpl oyees;
enp_record enp_cursor “ROMYPE;

BEG N
OPEN enp_cursor;
LOOP
FETCH enp_cursor | NTO enp_record;

enp_record

enpl oyee id | ast _nane
‘100 Ki ng

ORACLE
6-21 Copyright © Oracle Corporation, 2001. All rights reserved.

6-22

Cursor FORLooOpsS

Syntax:

FOR record _nane | N cursor_nane LOOP
st at enent 1;
st at enent 2;

END LOCP;

The cursor FORIloop is a shortcut to process
explicit cursors.

Implicit open, fetch, exit, and close occur.
The record is implicitly declared.

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

Cursor FORLooOpsS

Print a list of the employees who work for the sales
department.

DECLARE
CURSOR enp_cursor 1S
SELECT | ast _nane, departnent id
FROM enpl oyees;
BEG N
FOR enp_record IN enp_cursor LOOP
-- inplicit open and inplicit fetch occur
| F enp_record.departnent _id = 80 THEN

END LOOP; -- inplicit close occurs
END;
/

ORACLE
6-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Cursor FORLoops Using Subqueries

No need to declare the cursor.
Example:

BEGQ N
FOR enp record IN (SELECT | ast _nane, departnent id
FROM enpl oyees) LOOP
-- inplicit open and inplicit fetch occur
| F enp_record. departnent _id = 80 THEN

END LOOP; -- inplicit close occurs
END;

ORACLE
6-24 Copyright © Oracle Corporation, 2001. All rights reserved.

6-26

Summary

In this lesson you should have learned to:

Distinguish cursor types:

Implicit cursors: used for all DML statements and
single-row queries

Explicit cursors: used for queries of zero, one, or
more rows

Manipulate explicit cursors

Evaluate the cursor status by using cursor
attributes

Use cursor FOR loops

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 6 Overview

This practice covers the following topics:

Declaring and using explicit cursors to query rows
of a table

Using a cursor FORIoop

Applying cursor attributes to test the cursor status

ORACLE
6-27 Copyright © Oracle Corporation, 2001. All rights reserved.

Advanced Explicit @ursor Concepts

Copyright © Oracle Corporation, 2001. All rights reserved.

7-2

Objectives

After completing this lesson, you should be able to
do the following:

Write a cursor that uses parameters

Determine when a FOR UPDATE clause in a cursor
IS required

Determine when to use the WHERE CURRENT OF
clause

Write a cursor that uses a subquery

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

Ccursors with Parameters

Syntax:

CURSOR cur sor _nane
[(paranet er _nane datatype, ...)]

| S
sel ect st at enent;

Pass parameter values to a cursor when the cursor
IS opened and the query is executed.

Open an explicit cursor several times with a
different active set each time.

CPEN cursor _name(par anet er val ue,

ORACLE
7-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Ccursors with Parameters

Pass the department number and job title to the WHERE
clause, in the cursor SELECT statement.

DECLARE
CURSOR enp_cursor
(p_deptno NUMBER, p_job VARCHAR2) | S
SELECT enpl oyee id, |ast_nane
FROM enpl oyees
VWHERE departnent id = p_deptno
AND job_id = p_job;
BEG N
OPEN enp_cursor (80, 'SA REP);

CLOSE enp_cur sor;
OPEN enp_cursor (60, '"IT PROG);

END,
ORACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

7-5

The FORUPDATE Clause

Syntax:

SELECT ...
FROM

FOR UPDATE [OF col um_reference] [NOMI T] ;

Use explicit locking to deny access for the
duration of a transaction.

Lock the rows before the update or delete.

Copyright © Oracle Corporation, 2001. All rights reserved.

ORACLE

7-6

The FORUPDATE Clause

Retrieve the employees who work in department 80
and update their salary.

DECLARE
CURSOR enp_cursor |S
SELECT enpl oyee id, |ast _nane, departnent nane

FROM enpl oyees, departnents

VWHERE enpl oyees. departnent _id =

departnent s. departnent i d
AND enpl oyees. departnent _id = 80
FOR UPDATE OF sal ary NOMI T,

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

7-7

The VWHERE CURRENT OF Clause

Syntax:

VWHERE CURRENT OF cursor ;

Use cursors to update or delete the current row.
Include the FOR UPDATE clause in the cursor
guery to lock the rows first.

Use the WHERE CURRENT OF clause to reference
the current row from an explicit cursor.

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

The WHERE CURRENT OF Clause

DECLARE
CURSOR sal cursor IS
SELECT e.departnent id, enployee id, |ast _nane, salary
FROM enpl oyees e, departnents d
VWHERE d. departnent id = e.departnent id
and d. departnent _id = 60
FOR UPDATE OF sal ary NOMI T;
BEG N
FOR enp record IN sal cursor
LOOP
| F enp_record.salary < 5000 THEN
UPDATE enpl oyees
SET salary = enp record.salary * 1.10
VWHERE CURRENT OF sal cursor;
END | F;
END LOOP;
END,
/

ORACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

Cursors with Subqueries

Example:

DECLARE
CURSOR ny_cursor 1S
SELECT t1.departnent id, tl.departnent_nane,
t2.staff
FROM departnents t1, (SELECT departnent id,
COUNT(*) AS STAFF

FROM enpl oyees

GROUP BY departnent id) t2
VWHERE t 1. departnent id = t2.departnent id
AND t2.staff >= 3;

ORACLE
7-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

In this lesson, you should have learned to:

Return different active sets using cursors with
parameters.

Define cursors with subqueries and correlated
subqueries.

Manipulate explicit cursors with commands using
the:

FOR UPDATE clause
VWHERE CURRENT OF clause

ORACLE
7-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 7 Overview

This practice covers the following topics:

Declaring and using explicit cursors with
parameters

Using a FOR UPDATE cursor

ORACLE
7-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Copyright © Oracle Corporation, 2001. All rights reserved.

8-2

Objectives

After completing this lesson, you should be able to
do the following:

Define PL/SQL exceptions
Recognize unhandled exceptions

List and use different types of PL/SQL exception
handlers

Trap unanticipated errors

Describe the effect of exception propagation in
nested blocks

Customize PL/SQL exception messages

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

8-3

Handling Exceptions with PL/SQL

An exception is an identifier in PL/SQL that is raised
during execution.

How is it raised?
An Oracle error occurs.
You raise it explicitly.
How do you handle it?
Trap it with a handler.
Propagate it to the calling environment.

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

8-4

Handling Exceptions

Trap the exception Propagate the exception
DECLARE DECLARE
BEG N BEGQ N _
: : IS raised
Rl FXCEPTI ON EXCEPTI ON
Exception _ _ Exception
Is trapped Sho SN IS not
trapped

Exception
propagates to calling
environment

Copyright © Oracle Corporation, 2001. All rights reserved.

8-5

Exception Types

Implicitly

Predefined Oracle Server
raised

Nonpredefined Oracle Server

User-defined Explicitly raised

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

8-6

Trapping Exceptions

Syntax:

EXCEPTI ON

VWHEN exceptionl [OR exception2 . . .] THEN
st at enent 1;
st at enent 2;

[WHEN exception3 [OR exception4d . . .] THEN

st at enent 1;
st at enent 2;
- o ol
[WHEN OTHERS THEN
st at enent 1;
st at enent 2;

. |

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

8-7

Trapping Exceptions Guidelines

The EXCEPTI ON keyword starts exception-handling
section.

Several exception handlers are allowed.

Only one handler is processed before leaving the
block.

VWHEN OTHERS is the last clause.

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

8-8

Trapping Predefined Oracle Server Errors

Reference the standard name in the exception-
handling routine.

Sample predefined exceptions:
NO DATA FOUND
TOO MANY ROWS
| NVALI D _CURSOR
ZERO DI VI DE
DUP_VAL_ON | NDEX

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

Predefined Exceptions

Syntax:
BEG N

EXCEPTI ON
VHEN| NO_DATA FOUND |THEN

st at enent 1;
st at enent 2;

st at enent 1;
VWHEN OTHERS THEN

st at enent 1;

st at ement 2;

st at enent 3;

END;

ORACLE
8-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Trapping Nonpredefined Oracle
Server Errors

Declare Associate Reference

Declarative section Exception-handling
section

Name the Code the PRAGVA Handle the raised
exception EXCEPTION INIT exception
ORACLE

8-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Nonpredefined Error

Trap for Oracle server error number —2292, an
Integrity constraint violation.

DEFI NE p_deptno =
DECLARE

e_enps_renmai ni ng EXCEPTI ON;
PRAGVA EXCEPTION INIT
(e_enps_remaining, -2292);

BEG N
DELETE FROM depart nents

VWHERE departnent _id = &p_dept no;
COWM T,

EXCEPTI ON
DBMS_OUTPUT. PUT_LI NE (' Cannot renove dept
TO CHAR(&p deptno) || '. Enpl oyees exist.
END;

ORACLE
8-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Functions for Trapping Exceptions

SQLCODE: Returns the numeric value for the
error code

SQLERRM Returns the message associated
with the error number

ORACLE

8-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Functions for Trapping Exceptions

Example:

DECLARE
v_error_code NUVBER,
v_error_nessage VARCHAR2(255);
BEG N

EXCEPTI ON

VHEN OTHERS THEN

ROLLBACK;
v_error_code :=|SQ.CODE|; <

v_error_nessage :=|SQLERRM|;, —7m—————

| NSERT | NTO errors
VALUES(v_error_code, v_error_nessage);

ORACLE
8-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Trapping User-Defined Exceptions

Declare Reference

Declarative Executable Exception-handling
section section section
Name the Explicitly raise the Handle the raised
exception. exception by using the exception.

RAI SE statement.

ORACLE
8-16 Copyright © Oracle Corporation, 2001. All rights reserved.

User-Defined Exceptions

Example:

DEFI NE p_departnent _desc = 'Information Technol ogy '
DEFI NE P_depart nent _nunmber = 300

e i nvalid departnent EXCEPTI ON,
BEQ N
UPDATE depart nents
SET departnment _ na
VWHERE departnent id
| F SQLYNOTFOUND THEN
END | F;
COW T,
EXCEPTI ON

VWHEN|e i nvalid departnent | THEN

_LINE(" No such depart nent

= ' &p_departnent desc'
&p_depart nent _nunber;

me

ORACLE
8-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Calling Environments

ISQL*Plus Displays error number and message
to screen

Procedure Builder |Displays error number and message
to screen

Oracle Developer |Accesses error number and message

Forms In atrigger by means of the

ERROR CCODE and ERROR _TEXT
packaged functions

Precompiler Accesses exception number through

application the SQLCA data structure

An enclosing Traps exception in exception-

PL/SQL block handling routine of enclosing block
ORACLE

8-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Propagating Exceptions

DECLARE

€ _Nno_rows excepti on;

e integrity excepti on;

PRAGVA EXCEPTION INIT (e_integrity, -2292);
BEG N

FOR c_record IN enp_cursor LOOP

Subblocks can handle
UPDATE . ..

an exception or pass 'F SCLONOTFOUND THEN
the exception to the RAI SE e_no_r ows;

. END | F;
enclosing block. .

END LOOP;
EXCEPTI ON
VWHEN e_integrity THEN ...
VWHEN e no rows THEN ...
END,

ORACLE
8-19 Copyright © Oracle Corporation, 2001. All rights reserved.

The RAI SE_APPLI CATI ON_ERROR
Procedure

Syntax:

rai se_application_error (error_nunber,

nmessage[, {TRUE | FALSE}]);
You can use this procedure to issue user-defined
error messages from stored subprograms.

You can report errors to your application and
avoid returning unhandled exceptions.

ORACLE
8-20 Copyright © Oracle Corporation, 2001. All rights reserved.

8-21

The RAI SE_APPLI CATI ON_ERROR
Procedure

Used in two different places:
Executable section
Exception section

Returns error conditions to the user in a manner
consistent with other Oracle server errors

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

RAI SE_APPLI CATI ON_ERROCR

Executable section:
BEG N

..bELETE FROM enpl oyees
VWHERE nmanager _id = v_nyr;
| F SQLYNOTFOUND THEN

RAI SE_APPLI CATI ON_ERROR(- 20202,
*This is not a valid nmanager');
END | F;

Exception section:
EXCEPTI ON
WHEN NO_DATA_FOUND THEN

RAI SE_APPLI CATI ON_ERROR (- 20201,
'Manager is not a valid enployee.');

ORACLE
8-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

In this lesson, you should have learned that:

Exception types:
Predefined Oracle server error
Nonpredefined Oracle server error
User-defined error

Exception trapping

Exception handling:
Trap the exception within the PL/SQL block.
Propagate the exception.

ORACLE
8-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 8 Overview

This practice covers the following topics:
Handling named exceptions
Creating and invoking user-defined exceptions

ORACLE
8-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Creatli

Copyright © Oracle Corporation, 2001. All rights reserved.

9-2

Objectives

After completing this lesson, you should be able to
do the following:

Distinguish anonymous PL/SQL blocks from
named PL/SQL blocks (subprograms)

Describe subprograms
List the benefits of using subprograms

List the different environments from which
subprograms can be invoked

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

9-3

Objectives

After completing this lesson, you should be able to
do the following:
Describe PL/SQL blocks and subprograms

Describe the uses of procedures

Create procedures

Differentiate between formal and actual parameters
List the features of different parameter modes
Create procedures with parameters

Invoke a procedure

Handle exceptions in procedures

Remove a procedure

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

PL/SQL Program Constructs

Tools Constructs

Anonymous blocks

Database Server
Constructs

Application proceduresor
functions

Anonymous blocks

Application packages

Stored procedures or
functions

Application triggers

Stored packages

Object types

Databasetriggers

Object types

9-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Overview of Subprograms

A subprogram:

9-5

Is a named PL/SQL block that can accept parameters
and be invoked from a calling environment

Is of two types:
A procedure that performs an action
A function that computes a value

Is based on standard PL/SQL block structure

Provides modularity, reusability, extensibility,
and maintainability

Provides easy maintenance, improved data security
and integrity, improved performance, and improved
code clarity

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

9-6

Block Structure for Anonymous

PL/SQL Blocks

DECLARE (optional)

Declare PL/SQL objects to be used
within this block

(mandatory)
Define the executable statements

EXCEPTI ON (optional)

Define the actions that take place if
an error or exception arises

(mandatory)

Copyright © Oracle Corporation, 2001. All rights reserved.

ORACLE

9-7

Block Structure for PL/SQL Subprograms

> Subprogram Specification

Declaration section

Executable section
EXCEPTI ON (optional) —> Subprogram Body

Exception section

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

9-8

PL/SQL Subprograms

XXX XXX XXX
XXX XXX XXX

XXX XXX XXX
XXX XXX XXX

XXX XXX XXX
XXX XXX XXX

Code repeated more than
once in a PL/SQL program

XXX XXX XXX | comoe oo oo oo
XXX XXX XXX)

Subprogram P,
which contains the | = F_) -----
repeated code

PL/SQL program invoking
the subprogram at multiple
locations

ORACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

9-9

Benefits of Subprograms

Easy maintenance

Improved data security and integrity
Improved performance

Improved code clarity

Copyright © Oracle Corporation, 2001. All rights reserved.

ORACLE

Developing Subprograms by Using
ISQL*Plus

CREATE OR REFLACE PROCEDURE log execution
IS
BEGIH
IHNSERT INTO log_table {user_id, log_date)
UALLES {user, sysdate);
END log execution;

Script L o} 10k I 18 d Script
Enter statemeants:

REM Run the 01_addtabs.sql script before running this script
REM to ensure that the log_table is created.

CREATE OR REFPLACE PROCEDURE log_execution
=

T INTO log_table {user_id, log_date]

{user, sysdate),

EMD log_execution,

Clear Scraen Save Soript

ORACLE

9-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Invoking Stored Procedures
and Functions

Scott ‘ LOG EXECUTI ON
procedure

XXXXXXXXXXXXXX
VVVVVVVVVVVVVV
XXXXXXXXXXXXXX
VVVVVVVVVVVVVV
XXXXXXXXXXXXXX
VVVVVVVVVVVVVV
XXXXXXXXXXXXXX
VVVVVVVVVVVVVV

XXXXX XXX XXX XXX
VVVVVVVVVVVVVV
XXX XXX XX XXX XXX VVVVVVVVVVVVVV

Oracle Oracle Oracle

XXXXXXXXXXXXXX

Portal Discoverer Forms

XXXXXXXXXXXXXX

D ev eI (@) p er VVVVVVVVVVVVVV

XXXXXXXXXXXXXX

VVVVVVVVVVVVVV a

Scott

XXXXXXXXXXXXXX

ORACLE
9-11 Copyright © Oracle Corporation, 2001. All rights reserved.

What Is a Procedure?

A procedure is atype of subprogram that performs
an action.

A procedure can be stored in the database, as a
schema object, for repeated execution.

ORACLE
9-12 Copyright © Oracle Corporation, 2001. All rights reserved.

9-13

Syntax for Creating Procedures

CREATE [OR REPLACE] PROCEDURE procedure_ nane
[(paraneterl [npdel] datatypel,
paranmet er 2 [node2] dat atype2,

)]

| S| AS
PL/ SQL Bl ock;

The REPLACE option indicates that if the procedure
exists, it will be dropped and replaced with the
new version created by the statement.

PL/SQL block starts with either BEG Nor the

declaration of local variables and ends with either
ENDor END procedure_name.

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

Developing Procedures

Editor

Code to creatﬁ
procedure
ISOL*Plus

@ Load and execute fil e. sql

Oracle Source code Use SHOWERRORS

w to view

compilation errors
P code Procedure

created
R Execute B3

9-14 Copyright © Oracle Corporation, 2001. All rights reserved.

ORACLE

Formal Versus Actual Parameters

Formal parameters: variables declared in the
parameter list of a subprogram specification

Example:
CREATE PRCCEDURE rai se_sal (p_id NUMBER, p anount NUVBER)

END rai se_sal;

Actual parameters: variables or expressions
referenced in the parameter list of a subprogram call

Example:
rai se_sal (v_id, 2000)

ORACLE
9-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Procedural Parameter Modes

(DECLARE)

BEG N

EXCEPTI ON

END;

OoORACLE
0-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating Procedures with Parameters
IN ouUT IN QUT

Default mode Must be specified| Must be specified

Value is passed into Returned to Passed into
subprogram calling subprogram,;
environment returned to calling
environment

Formal parameter acts as | Uninitialized Initialized variable
a constant variable

Actual parameter can be a \\1st be a variable Must be a variable
literal, expression,

constant, or initialized
variable

Can be assigned a default | Cannot be Cannot be
value assigned assigned
a default value | adefault value

Copyright © Oracle Corporation, 2001. All rights reserved.

| NParameters: Example

176

CREATE OR REPLACE PROCEDURE rai se sal ary
(p_id IN enpl oyees. enpl oyee_ i d%'YPE)
| S
BEG N
UPDATE enpl oyees
SET salary = salary * 1.10
VWHERE enployee id = p_id;
END rai se_sal ary;
/

Procedure created.

ORACLE
0-18 Copyright © Oracle Corporation, 2001. All rights reserved.

QUT Parameters: Example

Calling environment QUERY _EMP procedure

ORACLE
0-19 Copyright © Oracle Corporation, 2001. All rights reserved.

QUT Parameters: Example

enp_query. sql

CREATE OR REPLACE PROCEDURE query_enp
(p_id I N enpl oyees. enpl oyee_i d%YPE,
p_nane QUT enpl oyees. | ast _nanme%l YPE,

outr
QJTr

enpl oyees. sal ar y% YPE,
enpl oyees. conmi ssi on_pct %' YPE)

p_sal ary
p_conmm
| S
BEG N
SELECT | ast _nane, sal ary, conm ssion_pct
| NTO p_nanme, p_salary, p_comm
FROM enpl oyees
VHERE enployee id = p_id;
END query_ enp;
/

Procedure created.

ORACLE

9-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Viewing OQUT Parameters

Load and run the enp_query. sqgl script file to
create the QUERY_EMP procedure.

Declare host variables, execute the QUERY EMP
procedure, and print the value of the global G_NAME
variable.
VARI ABLE g_nane VARCHAR2(25)

VARI ABLE g_sal NUMBER
VARl ABLE g_comm NUMBER

EXECUTE query enp(171, :g nanme, :g _sal, :g _comm

PRI NT g_nane

ORACLE
9-21 Copyright © Oracle Corporation, 2001. All rights reserved.

| NOUT Parameters

Calling environment FORMAT _PHONE procedure

'8006330575' [= '(800)633-0575' [P_P

CREATE OR REPLACE PROCEDURE format phone
(p_phone_no | N QUT VARCHAR2)

| S

BEQ N
p_phone _no :

|| SUBSTR(p_phone no, 1, 3) ||
|| SUBSTR(p_phone no, 4, 3) ||
|| SUBSTR(p_phone_no, 7);

END f or mat _phone;
/

Procedure created.

ORACLE
9-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Viewing | N OQUT Parameters

VARI ABLE g_phone _no VARCHAR2(15)
BEG N

. g_phone_no : = '8006330575";
END;
/
PRI NT g _phone_no
EXECUTE format _phone (:g_phone_no)
PRI NT g_phone_no

PLISOQL procedure successtully completed.

ORACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

Methods for Passing Parameters

Positional: List actual parameters in the same
order as formal parameters.

Named: List actual parameters in arbitrary order
by associating each with its corresponding formal
parameter.

Combination: List some of the actual parameters
as positional and some as named.

ORACLE
9-24 Copyright © Oracle Corporation, 2001. All rights reserved.

DEFAULT Option for Parameters

CREATE OR REPLACE PROCEDURE add_dept
(p_nane | N departnents. departnent nanme% YPE

DEFAULT ' unknown' |
p_| oc | N departnments. | ocation_i d%YPE

DEFAULT 1700

| S
BEQ N
| NSERT | NTO depart nent s(departnent id,
depart nent _nane, |ocation_id)
VALUES (departnents _seq. NEXTVAL, p_nane, p_loc);
END add_dept ;
/

Procedure created.

ORACLE
9-25 Copyright © Oracle Corporation, 2001. All rights reserved.

Examples of Passing Parameters

BEG N
add_dept;
add _dept (' TRAINING , 2500);
add dept (p_loc => 2400, p_nanme =>' EDUCATI ON);
add dept (p_loc => 1200) ;
END;
/
SELECT departnent id, departnent _nane, |ocation_id
FROM depart nment s;

PLISQL procedure successfully completed.

DEPARTMENT_NAME

?Administratinn

31 rows selected.

ORACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

Declaring Subprograms

| eave_enp2. sql

CREATE OR REPLACE PROCEDURE | eave enp2
(p_id IN enployees. enpl oyee i d%YPE)
| S
PROCEDURE | og_exec
| S
BEG N
| NSERT | NTO | og table (user _id, |og date)
VALUES (USER, SYSDATE);
END | og_exec;
BEGQ N

DELETE FROM enpl oyees

VWHERE enpl oyee id = p_id;
END | eave _enp2;

9-27 Copyright © Oracle Corporation, 2001. All rights reserved.

ORACLE

Invoking a Procedure from an Anonymous
PL/SQL Block

DECLARE
v_id NUMBER : = 163;
BEG N

rai se salary(v_id); --i nvoke procedure

COW T;

END;

ORACLE
9-28 Copyright © Oracle Corporation, 2001. All rights reserved.

Invoking a Procedure from Another
Procedure

process _enps. sql

CREATE OR REPLACE PROCEDURE process_enps
| S

CURSOR enp_cursor IS
SELECT enpl oyee id
FROM enpl oyees;
BEG N
FOR enp _rec I N enp_cursor

L OOP
END LOOP;
COW T;
END process_enps;
/

ORACLE
9-29 Copyright © Oracle Corporation, 2001. All rights reserved.

Handled Exceptions

Called procedure

Calling procedure

Exception raised

Exception handled

Control returns to
calling procedure

9-30 Copyright © Oracle Corporation, 2001. All rights reserved.

Handled Exceptions

REATE PROCEDURE p2_ins_dept(p_locid NUMBER) | S

v_di d NUVBER(4);
BEG N

DBMS OUTPUT. PUT_LI NE(' Procedure p2_ |ns _dept started)

| NSERT | NTO departnments VALUES (5, 'Dept 5', 145, p_| ocid);
SELECT departnent _id INTO v _did FRONleanoyees

VWHERE enpl oyee_id = 999;
END;

CREATE PROCEDURE pl ins loc(p_lid NUMBER, p city VARCHAR2)

| S
v_city VARCHAR2(30); v_dnanme VARCHAR2(30);

BEG N

DBMS OUTPUT. PUT_LI NE(' Mai n Procedure pl ins _|oc');

| NSERT | NTO | ocations (location_id, city) VALUES (p_lid, p_city);
SELECT city INTOv city FROM | ocati ons WHERE | ocation_id = p_|id;
DBMS QUTPUT. PUT _LINE(' I nserted city '||v_city);

DBMS QUTPUT. PUT_LI NE(' I nvoki ng the procedure p2_ins _dept ...");

p2_ins dept(p_lid);

EXCEPTI ON

VWHEN NO DATA FOUND THEN
ENDDBNS_OUTPUT.PUT_LINE('No such dept/loc for any enpl oyee');

ORACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

Unhandled Exceptions

Called procedure

Calling procedure

Exception raised

Exception unhandled

Control returned to
exception section of
calling procedure

9-32 Copyright © Oracle Corporation, 2001. All rights reserved.

Unhandled Exceptions

REATE PROCEDURE p2_noexcep(p_locid NUMBER) | S
v_di d NUVBER(4);
BEG N
DBMS OUTPUT. PUT_LI NE(' Procedure p2_noexcep started');
| NSERT | NTO departnments VALUES (6, 'Dept 6', 145, p_locid);
SELECT departnment _id I NTO v_did FROM enpl oyees
VWHERE enpl oyee_id = 999;
END;

CREATE PROCEDURE pl noexcep(p_lid NUMBER, p_city VARCHAR2)

| S
v_city VARCHAR2(30); v_dnane VARCHAR2(30);

BEG N

DBMS OUTPUT. PUT _LINE(' Main Procedure pl noexcep');

| NSERT | NTO | ocations (location_id, city) VALUES (p_lid, p_city);
SELECT city INTOv city FROM | ocati ons WHERE | ocation_id = p_lid;
DBMS OUTPUT. PUT LI NE(' Inserted new city '||v_city);

DBMS OUTPUT. PUT LI NE(' I nvoki ng the procedure p2 _noexcep ...');

P2 _noexcep(p_lid);

END;

ORACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

Removing Procedures

Drop a procedure stored in the database.

Syntax:

DROP PROCEDURE procedur e_nane

Example:

DROP PROCEDURE r ai se_sal ary;

Procedure dropped.

ORACLE

9-34 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

In this lesson, you should have learned that:

A procedure is a subprogram that performs an
action.

You create procedures by using the CREATE
PROCEDURE command.

You can compile and save a procedure in the
database.

Parameters are used to pass data from the calling
environment to the procedure.

There are three parameter modes: I N, OUT, and I N
QUT.

ORACLE
9-35 Copyright © Oracle Corporation, 2001. All rights reserved.

9-36

Summary

Local subprograms are programs that are defined
within the declaration section of another program.

Procedures can be invoked from any tool or
language that supports PL/SQL.

You should be aware of the effect of handled and
unhandled exceptions on transactions and calling
procedures.

You can remove procedures from the database by
using the DROP PROCEDURE command.

Procedures can serve as building blocks for an
application.

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 9 Overview

This practice covers the following topics:

Creating stored procedures to:

Insert new rows into a table, using the supplied
parameter values

Update data in a table for rows matching with the
supplied parameter values

Delete rows from a table that match the supplied
parameter values

Query atable and retrieve data based on supplied
parameter values

Handling exceptions in procedures
Compiling and invoking procedures

ORACLE
9-37 Copyright © Oracle Corporation, 2001. All rights reserved.

Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

Describe the uses of functions

Create stored functions

Invoke a function

Remove a function

Differentiate between a procedure and a function

ORrRACLE
10-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Overview of Stored Functions

A function is a named PL/SQL block that returns
a value.

A function can be stored in the database as a
schema object for repeated execution.

A function is called as part of an expression.

ORrRACLE
10-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Syntax for Creating Functions

CREATE [OR REPLACE] FUNCTI ON functi on_nane
[(paraneterl [npdel] datatypel,
paranet er 2 [node2] datatype2,

)]
RETURN dat at ype

| S| AS
PL/ SQL Bl ock;

The PL/SQL block must have at least one RETURN
statement.

ORrRACLE
10-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a Function

@ file sql

Editor 2
Code to create‘
function

ISOL*Plus

@ Load and execute fil e. sql

Oracle Source code

<

P code Function
created

o"Voke g3

10-5 Copyright © Oracle Corporation, 2001. All rights reserved.

ORACLE

10-6

Creating a Stored Function
by Using ISQL*Plus

. Enter the text of the CREATE FUNCTI ON statement

In an editor and save it as a SQL script file.

. Run the script file to store the source code and

compile the function.

. Use SHOW ERRCORS to see compilation errors.
4. When successfully compiled, invoke the function.

ORrRACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a Stored Function by Using
ISQL*Plus: Example

get _sal ary. sql

CREATE OR REPLACE FUNCTI ON get sal
(p_1id |IN enpl oyees. enpl oyee | d%'YPE)
RETURN NUMBER

| S

v_sal ary enpl oyees. sal ary%YPE : =0;

BEG N
SELECT sal ary
| NTO v _salary
FROM enpl oyees
VWHERE enpl oyee id = p_id;
RETURN v_sal ary;
END get sal;
/

ORrRACLE
10-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Executing Functions

Invoke a function as part of a PL/SQL expression.
Create a variable to hold the returned value.

Execute the function. The variable will be
populated by the value returned through a RETURN

statement.

ORACLE

10-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Executing Functions: Example

Calling environment GET_SAL function

VARI ABLE g sal ary NUMBER

EXECUTE : g salary := get _sal (117)

PRI NT g sal ary

G_SALARY

10-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Advantages of User-Defined Functions
In SQL Expressions

Extend SQL where activities are too complex, too
awkward, or unavailable with SQL

Can increase efficiency when used in the WHERE
clause to filter data, as opposed to filtering the
data in the application

Can manipulate character strings

ORACLE

10-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Invoking Functions in SQL Expressions:
Example

CREATE OR REPLACE FUNCTI ON tax(p_val ue I N NUVBER)
RETURN NUMBER | S
BEG N
RETURN (p_value * 0.08);
END t ax;
/

SELECT enpl oyee id, |ast _nane, salary, tax(salary)

FROM enpl oyees
VWHERE departnent id = 100;

Function created.

LAST NAME

.fGreenherg

B rows selected.

ORACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

Locations to Call User-Defined Functions

Select list of a SELECT command
Condition of the WHERE and HAVI NGclauses

CONNECT BY, START W TH, ORDER BY, and GROUP
BY clauses

VALUES clause of the | NSERT command
SET clause of the UPDATE command

ORrRACLE
10-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Restrictions on Calling Functions from
SQL Expressions

To be callable from SQL expressions, a user-defined
function must:

Be a stored function
Accept only | Nparameters

Accept only valid SQL data types, not PL/SQL
specific types, as parameters

Return data types that are valid SQL data types,
not PL/SQL specific types

ORACLE

10-13 Copyright © Oracle Corporation, 2001. All rights reserved.

10-14

Restrictions on Calling Functions from
SQL Expressions

Functions called from SQL expressions cannot
contain DML statements.

Functions called from UPDATE/DELETE statements

on atable T cannot contain DML on the same table
T.

Functions called from an UPDATE or a DELETE
statement on a table T cannot query the same table.

Functions called from SQL statements cannot
contain statements that end the transactions.

Calls to subprograms that break the previous
restriction are not allowed in the function.

ORrRACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

Restrictions on Calling from SQL

CREATE OR REPLACE FUNCTION dm call sqgl (p_sal NUMBER)
RETURN NUMBER | S
BEGQ N

| NSERT | NTO enpl oyees(enpl oyee id, |ast _nane, email,
hire date, job id, salary)
VALUES(1, 'enployee 1', 'enpl@onpany.com,
SYSDATE, 'SA MAN , 1000);
RETURN (p_sal + 100);
END,

/

Function created.

UPDATE enpl oyees SET salary = dml call _sqgl (2000)
VWHERE enpl oyee id = 170;
TTPDATE emplovees SET salary = dml call sqgl{2000)

EEEOE at line 1:

QEA-04091: table PLEQL EMPLOYEES 12 mutating, trigeer/finction may not see it
OFA-06512; at "PLIQL DML CALL SQL", line 4

ORACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

Removing Functions

Drop a stored function.
Syntax:

DROP FUNCTI ON functi on_nane

Example:

DROP FUNCTI ON get sal ;

Function dropped.

All the privileges granted on a function are revoked
when the function is dropped.

The CREATE OR REPLACE syntax is equivalent to

dropping a function and recreating it. Privileges
granted on the function remain the same when this
syntax is used.

ORrRACLE
10-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Procedure or Function?

ORrRACLE
10-17 Copyright © Oracle Corporation, 2001. All rights reserved.

10-18

Comparing Procedures
and Functions

Execute as a PL/SQL Invoke as part of an
statement expression

Do not contain RETURN Must contain a RETURN
clause in the header clause in the header

Can return none. one Must return a single value
or many values

Can contain a RETURN Must contain at least one
statement RETURN statement

ORrRACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

Benefits of Stored
Procedures and Functions

Improved performance

Easy maintenance

Improved data security and integrity
Improved code clarity

ORrRACLE
10-19 Copyright © Oracle Corporation, 2001. All rights reserved.

10-20

Summary

In this lesson, you should have learned that:

A function is a named PL/SQL block that must
return a value.

A function is created by using the CREATE
FUNCTI ON syntax.

A function is invoked as part of an expression.

A function stored in the database can be called in
SQL statements.

A function can be removed from the database by
using the DROP FUNCTI ON syntax.

Generally, you use a procedure to perform an
action and a function to compute a value.

ORrRACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 10 Overview

This practice covers the following topics:

Creating stored functions

To query a database table and return specific
values

To be used in a SQL statement

To insert a new row, with specified parameter
values, into a database table

Using default parameter values
Invoking a stored function from a SQL statement

Invoking a stored function from a stored
procedure

ORrRACLE
10-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Manag Subpragrams

Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

Contrast system privileges with object privileges
Contrast invokers rights with definers rights

Identify views in the data dictionary to manage
stored objects

Describe how to debug subprograms by using the
DBMS OUTPUT package

oRrRACLE
11-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Required Privileges

System privileges

CREATE (ANY) PROCEDURE
> ALTER ANY PROCEDURE
DROP ANY PROCEDURE
EXECUTE ANY PROCEDURE

DBA grants

Object privileges
Owner grants
> EXECUTE

To be able to refer and access objects from a different
schema in a subprogram, you must be granted access to
the referred objects explicitly, not through a role.

oRrRACLE
11-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Granting Access to Data

Direct access:

GRANT SELECT Scott
ON enpl oyees

EMPLOYEES

TO scott;

i
SELECT

SCOTI'T. QUERY_EMP

Indirect access:

GCRANT EXECUTE
ON query enp

TO green;

= 4

The procedure executes with the privileges of the
owner (default).

orRACLE
11-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Using Invoker's-Rights

The procedure executes with the privileges of the user.
Scott EMPLOYEES

CREATE PROCEDURE query_enpl oyee .. I A
(p_id I N enpl oyees. enpl oyee i d%YPE, §E I...
‘-

p_name QUT enpl oyees. | ast _name%l YPE,
p_salary OUT enpl oyees. sal ar y%d YPE,
p_comm OUT

enpl oyees. conm ssi on_pct % YPE) >

AUTHI D CURRENT USER SCOTT.

S QUERY_EMPLOYEE

BEG N
SELECT | ast _nane, sal ary,

conmi ssi on_pct { '
| NTO p_nanme, p_salary, p_comm
FROM enpl oyees

>

/END query_enpl oyee; EMPLOYEES

VWHERE enpl oyee i d=p_i d; Green

oRrRACLE
11-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Managing Stored PL/SQL Objects

Data dictionary

Editor

-

DESCRI BE . . .

DBMVS_ OUTPUT

11-6 Copyright © Oracle Corporation, 2001. All rights reserved.

11-7

USER OBJECTS

Column
OBJECT NAME
OBJECT | D
OBJECT _TYPE

Column Description

Name of the object

Internal identifier for the object

Type of object, for example, TABLE,
PROCEDURE, FUNCTI ON, PACKAGE, PACKAGE
BODY, TRI GGER

g

TED Date when the object was created

LAST_DDL_TI ME | Date when the object was last modified
TI MESTAMP

Date and time when the object was last
recompiled

VALI Dor | NVALI D

STATUS

*Abridged column list

OoORrRACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

List All Procedures and Functions

SELECT obj ect nane, object _type

FROM user objects

VWHERE obj ect _type in (' PROCEDURE' ,' FUNCTI ON)
ORDER BY obj ect nane;

24 rows selected.

oRrRACLE
11-8 Copyright © Oracle Corporation, 2001. All rights reserved.

USER SOURCE Data Dictionary View

Column Description
Name of the object

Type of object, for example, PROCEDURE,

FUNCTI ON, PACKAGE, PACKAGE BODY

Line number of the source code
Text of the source code line

oRrRACLE
11-9 Copyright © Oracle Corporation, 2001. All rights reserved.

List the Code of Procedures
and Functions

SELECT text

FROM wuser _source

VWHERE nane = ' QUERY_ EMPLOYEE
ORDER BY |1 ne;

oRrRACLE
11-10 Copyright © Oracle Corporation, 2001. All rights reserved.

USER ERRORS

Column Description
Name of the object

Type of object, for example, PROCEDURE,
FUNCTI ON, PACKACE, PACKAGE BODY, TRI GGER

SEQUENCE Sequence number, for ordering

LI NE Line number of the source code at which the
error occurs

Position in the line at which the error occurs

Text of the error message

oRrRACLE
11-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Detecting Compilation Errors: Example

CREATE OR REPLACE PROCEDURE | og _executi on

| S

BEG N

| NPUT | NTO | og table (user _id, |og date)
-- wWwrong

VALUES (USER, SYSDATE);
END;
/

Warning: Procedure created with compilation errors.

oRrRACLE
11-12 Copyright © Oracle Corporation, 2001. All rights reserved.

List Compilation Errors by Using
USER ERROCRS

SELECT line || "/' || position PGS, text
FROM user _errors

VWHERE nane = ' LOG _EXECUTI ON

ORDER BY | i ne;

bal "EMND"

oRrRACLE
11-13 Copyright © Oracle Corporation, 2001. All rights reserved.

List Compilation Errors by Using
SHOW ERRORS

SHOW ERRORS PROCEDURE | og_executi on

Errors for PROCEDURE LOG EXECTTTION:

- Encountered ﬂ

orRACLE
11-14 Copyright © Oracle Corporation, 2001. All rights reserved.

DESCRI BE in ISQL*Plus

DESCRI BE query_enpl oyee
DESCRI BE add_dept
DESCRI BE t ax

PEOCEDUEE QUERY EMPLOYEE
gument Name

(MUMBER;

Argument Hame / Default?

[DEFALILT

oRrRACLE
11-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Debugging PL/SQL Program Units

The DBMs OUTPUT package:
Accumulates information into a buffer

Allows retrieval of the information from the buffer

Autonomous procedure calls (for example, writing
the output to a log table)

Software that uses DBMs DEBUG

Procedure Builder
Third-party debugging software

OoORrRACLE

11-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

USER SOURCE

code

-

Compile USER ERRORS

|

P-code

e

oRrRACLE
11-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

Debug

\/ Information

—

11-18 Copyright © Oracle Corporation, 2001. All rights reserved.

OoORrRACLE

Practice 11 Overview

This practice covers the following topics:
Re-creating the source file for a procedure
Re-creating the source file for a function

oRrRACLE
11-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating Packag

Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

Describe packages and list their possible
components

Create a package to group together related
variables, cursors, constants, exceptions,
procedures, and functions

Designate a package construct as either public or
private

Invoke a package construct
Describe a use for a bodiless package

ORACLE
12-2 Copyright © Oracle Corporation, 2001. All rights reserved.

12-3

Overview of Packages

Packages:

Group logically related PL/SQL types, items, and
subprograms

Consist of two parts:
Specification
Body
Cannot be invoked, parameterized, or nested

Allow the Oracle server to read multiple objects
INnto memory at once

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

Components of a Package
-]

Package
specification

:I

Package
body

12-4 Copynght © Oracle Corporation, 2001. All rights reserved.

Referencing Package Objects

Package
specification

Package
body

12-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Developing a Package

JI11LJ
Code 0

iSOL*Plus

Load and runthefil e. sql

k. =

Oracle Source code

S Compiles

P code

s ccutes

12-6 Copyright © Oracle Corporation, 2001. All rights reserved.

ORACLE

12-7

Developing a Package

Saving the text of the CREATE PACKAGE statement

In two different SQL files facilitates later
modifications to the package.

A package specification can exist without a
package body, but a package body cannot exist
without a package specification.

ORACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

Creating the Package Specification

Syntax:

CREATE [OR REPLACE] PACKAGE package nane
| S| AS
public type and item decl arati ons

subpr ogram speci fications
END package nane;

The REPLACE option drops and recreates the
package specification.

Variables declared in the package specification are
Initialized to NULL by default.

All the constructs declared in a package
specification are visible to users who are granted
privileges on the package.

ORACLE
12-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Declaring Public Constructs

COW PACKAGE package

ESN ©

Package
specification

(2]

12-9 Copyright © Oracle Corporation, 2001. All rights reserved.

12-10

Creating a Package Specification:
Example

CREATE OR REPLACE PACKAGE comm package | S
g _comm NUMBER := 0.10; --initialized to 0.10
PROCEDURE reset comm
(p_comm |IN NUMBER);

END comm package;
/

Package created.

G _COWis a global variable and is initialized to 0.10.

RESET COWis a public procedure that is
Implemented in the package body.

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

Creating the Package Body

Syntax:

CREATE [OR REPLACE] PACKAGE BODY package nane
| S| AS

private type and item decl arati ons
subpr ogram bodi es
END package nane;

The REPLACE option drops and recreates the
package body.

Identifiers defined only in the package body are
private constructs. These are not visible outside
the package body.

All private constructs must be declared before
they are used in the public constructs.

ORACLE
12-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Public and Private Constructs

COW PACKAGE package

Package
specification

Package
body

_T ©
o sunion @

ORACLE

12-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a Package Body: Example

comm pack. sql

CREATE OR REPLACE PACKAGE BODY comm package
| S
FUNCTI ON validate comm (p_comm | N NUMBER)
RETURN BOOLEAN
| S
V_nax_comm NUMBER,;
BEG N

SELECT MAX(comm ssi on_pct)
| NTO V_hax_conm
FROM enpl oyees;
|F p_comm > v_max_conmm THEN RETURN(FALSE) ;
ELSE RETURN(TRUE);
END | F;
END val i dat e_comm

ORACLE
12-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a Package Body: Example

comm pack. sql

PROCEDURE reset _comm (p_comm |IN NUMBER)

| S

BEG N
| F validate _conmm(p_comm
THEN g comm=p _comm --reset global variable
ELSE

RAI SE_APPLI CATI ON_ERROR(-20210, ' I nvalid conm ssion');
END | F;
END reset comm
END conm package;
/

Package body created.

ORACLE
12-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Invoking Package Constructs

Example 1: Invoke a function from a procedure within
the same package.

CREATE OR REPLACE PACKACGE BODY comm package | S

PROCEDURE r eset conmm
(p_comm IN NUMBER)
| S

BEGQ N

| F lval i date_conmm(p_comm

THEN g _conmm : = p_conm
ELSE
RAI SE_APPLI CATI ON_ERROR
(-20210, 'Invalid conm ssion');
END | F;
END reset conm
END conm package;

ORACLE
12-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Invoking Package Constructs

Example 2: Invoke a package procedure from iSQL*Plus.

EXECUTE comm package. reset _comm 0. 15)

Example 3: Invoke a package procedure in a different
schema.

EXECUTE scott.comm package. reset com(0. 15)

Example 4: Invoke a package procedure in a remote
database.

EXECUTE conm package. reset _conm@y(0. 15)

ORACLE

12-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Declaring a Bodiless Package

CREATE OR REPLACE PACKAGE gl obal _ consts | S
mle 2 kilo CONSTANT NUMBER 1. 6093;

kilo 2 mle CONSTANT NUMBER 0. 6214;
yard 2 neter CONSTANT NUMBER 0. 9144;
neter 2 yard CONSTANT NUMBER 1. 0936;
END gl obal consts;
/

EXECUTE DBMS_OUTPUT. PUT_LI NE(' 20 m | es
gl obal _consts.mle 2 kilo||"' kni)

Package created.

PLIZOL pre ||-1111|- successfully completed.

ORACLE
12-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Referencing a Public Variable from
a Stand-Alone Procedure

Example:

CREATE OR REPLACE PROCEDURE neter to yard
(p_nmeter I'N NUMBER, p_yard OUT NUMBER)

| S
BEQ N
p yard := p nmeter * global consts.neter_ 2 yard,
END neter to_yard,
/
VARI ABLE yard NUMBER
EXECUTE neter to yard (1, :yard)
PRI NT yard

Frocedure created.
PLASQL procedure successfully completed.

ORACLE
12-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Removing Packages

To remove the package specification and the body,
use the following syntax:

DROP PACKAGE package nane;

To remove the package body, use the following syntax:

DROP PACKAGE BODY package_ nane;

ORACLE
12-19 Copyright © Oracle Corporation, 2001. All rights reserved.

12-20

Guidelines for Developing Packages

Construct packages for general use.
Define the package specification before the body.

The package specification should contain only
those constructs that you want to be public.

Place items in the declaration part of the package
body when you must maintain them throughout
a session or across transactions.

Changes to the package specification require
recompilation of each referencing subprogram.

The package specification should contain as few
constructs as possible.

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

12-21

Advantages of Packages

Modularity: Encapsulate related constructs.

Easier application design: Code and compile
specification and body separately.

Hiding information:

Only the declarations in the package
specification are visible and accessible to
applications.

Private constructs in the package body are
hidden and inaccessible.

All coding is hidden in the package body.

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

12-22

Advantages of Packages

Added functionality: Persistency of variables
and cursors

Better performance:

The entire package is loaded into memory
when the package is first referenced.

There is only one copy in memory for all users.
The dependency hierarchy is simplified.

Overloading: Multiple subprograms of the
same name

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

In this lesson, you should have learned how to:

Improve organization, management, security, and
performance by using packages

Group related procedures and functions together
In a package

Change a package body without affecting a
package specification

Grant security access to the entire package

ORACLE
k] Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

In this lesson, you should have learned how to:
Hide the source code from users

Load the entire package into memory on the
first call

Reduce disk access for subsequent calls
Provide identifiers for the user session

ORACLE
12-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

CREATE [OR REPLACE] PACKAGE |Create (or modify) an existing
package specification

CREATE [OR REPLACE] PACKAGE |Create (or modify) an existing
BODY package body

DROP PACKAGE Remove both the package
specification and the package body

DROP PACKAGE BODY

Remove the package body only

ORACLE

12-25 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 12 Overview

This practice covers the following topics:
Creating packages
Invoking package program units

ORACLE
12-26 Copyright © Oracle Corporation, 2001. All rights reserved.

More Package C ts

Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

Write packages that use the overloading feature

Describe errors with mutually referential
subprograms

Initialize variables with a one-time-only procedure
Identify persistent states

oRrRACLE
13-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Overloading

Enables you to use the same name for different
subprograms inside a PL/SQL block, a
subprogram, or a package

Requires the formal parameters of the
subprograms to differ in number, order, or data

type family
Enables you to build more flexibility because a

user or application is not restricted by the specific
data type or number of formal parameters

Note: Only local or packaged subprograms can be
overloaded. You cannot overload stand-alone
subprograms.

ORACLE

13-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Overloading: Example

over _pack. sql
CREATE OR REPLACE PACKACE over _pac
| S
PROCEDURE |add_dept
(p_deptno I N departnents. departnment i d% YPE,

p_nanme | N departnents. departnent nane% YPE
DEFAULT ' unknown',

p_loc IN departnents.|ocation_i d%YPE DEFAULT O);

meﬂlmEHH!HHil

(p_nane | N departnents. departnent _nanme% YPE
DEFAULT ' unknown',

p_loc |IN departnents.|ocation_i d¥WYPE DEFAULT O);
END over pack;
/

ORACLE

13-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Overloading: Example

over pack_ body. sql

CREATE OR REPLACE PACKAGE BODY over pack IS
PROCEDURE| add_dept
(p_deptno I'N departnents. departnent i d%l'YPE,

p_nane | N departnents. departnent nanme%l YPE DEFAULT ' unknown',
p loc |IN departnments.|location_id%YPE DEFAULT 0)
| S
BEG N

| NSERT | NTO departnents (departnent id,

depart nment _nane, |ocation_id)

VALUES (p_deptno, p_nanme, p_loc);
END add_dept ;
PROCEDURE | add_dept

(p_nanme I N departnents. departnment _nanme%l YPE DEFAULT ' unknown',
p loc |IN departnments.|ocation_id%YPE DEFAULT O0)
| S
BEG N
| NSERT | NTO departnents (departnent id,
depart nent _nane, | ocation_id)
VALUES (departnents_seq. NEXTVAL, p_nane, p_loc);
END add_dept ;
END over pack;
/

ORACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

Overloading: Example

Most built-in functions are overloaded.

For example, see the TO CHAR function of the
STANDARD package.

FUNCTI ON TO CHAR (pl DATE) RETURN VARCHARZ;
FUNCTI ON TO CHAR (p2 NUVBER) RETURN VARCHARZ;

FUNCTI ON TO CHAR (pl DATE, P2 VARCHAR?) RETURN VARCHARZ;
FUNCTI ON TO CHAR (pl NUMBER, P2 VARCHAR?) RETURN VARCHARZ;

If you redeclare a built-in subprogram in a PL/SQL
program, your local declaration overrides the
global declaration.

ORACLE

13-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Using Forward Declarations

You must declare identifiers before referencing them.

CREATE OR REPLACE PACKAGE BODY forward_pack
| S

PROCEDURE award _bonus(. . .)

| S

BEG N

calc rating(. . .); --illegal reference

END;

PROCEDURE cal c_rating(.
| S

BEQ N

END;

END f orward_pack;
/

ORACLE

13-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Using Forward Declarations

CREATE OR REPLACE PACKAGE BODY forward pack
| S

PROCEDURE [cal c_rating(. . .); -- forward decl aration

PROCEDURE award _bonus(. . .)
| S -- Subprograns defined
BEQ N -- i n al phabetical order

|ca|c_rat|ng‘. .

END;

PROCEDURE calc_rating'. CoL)
BEG N
END,

END f orward_pack;
/

ORACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a One-Time-Only Procedure

CREATE OR REPLACE PACKAGE t axes
| S
t ax NUVBER,
... ~-- declare all public procedures/functions
END t axes;
/

CREATE OR REPLACE PACKAGE BODY t axes

| S

-- declare all private vari ables

-- define public/private procedures/functions

BEG N
SELECT rate_val ue
| NTO t ax
FROM tax _rates
VHERE rate_nane = ' TAX';

END t axes;
/

ORACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

Restrictions on Package Functions
Used in SQL

A function called from:

A query or DML statement can not end the current

transaction, create or roll back to a savepoint, or
ALTERthe system or session.

A query statement or a parallelized DML statement
can not execute a DML statement or modify the
database.

A DML statement can not read or modify the

particular table being modified by that DML
statement.

Note: Calls to subprograms that break the above
restrictions are not allowed.

oRrRACLE
13-11 Copyright © Oracle Corporation, 2001. All rights reserved.

User Defined Package: t axes pack

CREATE OR REPLACE PACKACE t axes_pack
| S
FUNCTI ON tax (p_value | N NUVMBER) RETURN NUMBER;
END t axes pack;
/

Package created.

CREATE OR REPLACE PACKAGE BODY t axes_ pack
| S
FUNCTI ON tax (p_value I'N NUMBER) RETURN NUMBER
| S
v_rate NUMBER : = 0. 08;
BEG N
RETURN (p_value * v rate);
END t ax;
END t axes pack;
/

Package body created.

ORACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

Invoking a User-Defined Package Function
from a SQL Statement

SELECT |t axes_pack. tax(sal ary)| salary, |ast_nane
FROM enpl oyees;

109 rows selected.

ORACLE

13-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Persistent State of Package

Variables: Example

CREATE OR REPLACE PACKAGE conm package IS
g_comm NUMBER : = 10; --initialized to 10
PROCEDURE reset _comm (p_comm |IN NUMBER);

END comm package;

/

CREATE OR REPLACE PACKAGE BODY comm package | S
FUNCTI ON validate comm (p_comm |IN NUMBER)

RETURN BOOLEAN
| S v_nmax_conmm NUMBER;
BEG N

. -- validates commission to be less than maximum
-- commission in the table
END val i dat e_conm
PROCEDURE reset _comm (p_comm |IN NUMBER)

| S BEG N
-- calls validate_comm with specified value

END r eset _comm
END comm package;
/

ORACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

Persistent State of Package Variables

Scott Jones

Time

EXECUTE
comm package. reset _conm

(0. 25)
max_conmr0.4 > 0.25
g_comm=0.25

max_comm=0.8 > 0.5
g_comm=0.5

Copyright © Oracle Corporation, 2001. All rights reserved.

Persistent State of Package Variables

Time Scott Jones
EXECUTE

conmm package. reset _conmm
(0. 25)

max_conmr0.4 > 0.25
g_comm=0.25

max_comm=0.8 > 0.5

EXECUTE g_conm= 0.5

conmm package. reset conmm
(0. 6)
max_comr0.4 < 0.6 INVALID

Copyright © Oracle Corporation, 2001. All rights reserved.

Persistent State of Package Variables

Time Scott Jones
EXECUTE
conmm package. r eset _conm
(0. 25)

max_conmr0.4 > 0.25
g_comm= 0.25

max_comm=0.8 > 0.5

EXECUTE g_conm= 0.5

conmm package. reset conmm
(0. 6)
max_comr0.4 < 0.6 INVALID

Logged In again. g comm = 10,
max_com=0.4

Copyright © Oracle Corporation, 2001. All rights reserved.

Controlling the Persistent State of a
Package Cursor

Example:

CREATE OR REPLACE PACKAGE pack_cur
| S
CURSCOR c1 IS SELECT enpl oyee id
FROM enpl oyees
OCRDER BY enpl oyee i d DESC

PROCEDURE procl 3rows;
PROCEDURE proc4_6r ows;
END pack cur;
/

ORACLE

13-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Controlling the Persistent State of a

Package Cursor
CREATE OR REPLACE PACKAGE BODY pack cur IS

v_enpno NUMBER;
PROCEDURE procl 3rows | S
BEG N

OPEN c1,;

LOOP

FETCH c1 | NTO v_enpno;

DBVS OUTPUT. PUT_ LI NE('

EXI T WHEN ¢ 1%ROAOUNT >_ 3
END LOOP:

END procl 3rom5;

PROCEDURE proc4 6rows |S
BEG N

LOOP
FETCH c1 | NTO v_enpno;
DBVS OUTPUT. PUT_ LI NE('

EXI T WHEN ¢ 1%ROACOUNT >— 6:
END LOOP:

CLOSE c1;
END proc4_ 6rom5
END pack_cur;
/

|| (v_enpno));

|| (v_enpno));

ORACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

Executing PACK CUR

SET SERVEROUTPUT ON
EXECUTE pack _cur.procl 3rows
EXECUTE pack _cur. proc4 6rows

L procedure successfully completed.

L procedure successfully completed.

ORACLE

13-20 Copyright © Oracle Corporation, 2001. All rights reserved.

PL/SQL Tables
and Records in Packages

CREATE OR REPLACE PACKAGE enp package IS
TYPE enp_table type IS TABLE OF enpl oyees%ROMYPE
| NDEX BY BI NARY | NTECGER,
PROCEDURE read _enp _table
(p_enp_table QUT enp _table type);
END enp_package;
/

CREATE OR REPLACE PACKAGE BODY enp package IS
PROCEDURE read _enp_tabl e
(p_enp_table QUT enp table type) IS
I Bl NARY | NTEGER : = O;
BEGQ N
FOR enp_record IN (SELECT * FROM enpl oyees)
LOCP
p enp table(i) := enp_record,
| o= 1 +1;
END LOOP;
END read enp tabl e;
END enp_package;
/

ORACLE

13-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

In this lesson, you should have learned how to:
Overload subprograms
Use forward referencing
Use one-time-only procedures
Describe the purity level of package functions
Identify the persistent state of packaged objects

oRrRACLE
13-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 13 Overview

This practice covers the following topics:
Using overloaded subprograms
Creating a one-time-only procedure

13-23 Copyright © Oracle Corporation, 2001. All rights reserved.

ORACLE

Oracle Stlppliec nges

Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

Write dynamic SQL statements using DBMS SQL
and EXECUTE | MVEDI ATE

Describe the use and application of some Oracle
server-supplied packages:

DBVS_DDL

DBVS_JOB

DBVS OUTPUT

UTL_FI LE

UTL_HTTP and UTL_TCP

OoORrRACLE
14-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Using Supplied Packages

Oracle-supplied packages:
Are provided with the Oracle server
Extend the functionality of the database

Enable access to certain SQL features normally
restricted for PL/SQL

OoORrRACLE
14-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Using Native Dynamic SQL

Dynamic SQL:

Is a SQL statement that contains variables that can
change during runtime

Is a SQL statement with placeholders and is stored
as a character string

Enables general-purpose code to be written

Enables data-definition, data-control, or session-
control statements to be written and executed
from PL/SQL

Is written using either DBVM5_SQL or native dynamic
SQL

ORrRACLE

14-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Execution Flow

SQL statements go through various stages:
Parse
Bind
Execute
Fetch
Note: Some stages may be skipped.

ORrRACLE

14-5 Copyright © Oracle Corporation, 2001. All rights reserved.

14-6

Using the DBMs SCQL Package

The DBMS _SQL package is used to write dynamic SQL
In stored procedures and to parse DDL statements.

Some of the procedures and functions of the package
Include:
OPEN CURSOR

PARSE

Bl ND VAR ABLE
EXECUTE

FETCH ROAS
CLOSE_CURSCR

oRACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

Using DBMS SQL

CREATE OR REPLACE PRCCEDURE del ete_all rows
(p_tab _nanme | N VARCHAR2, p rows del OUT NUMBER)

| S
cur sor _nane | NTEGER,;

BEQ N

cursor _nane :=|DBMsS _SQL. OPEN CURSOR;

DBMS SQL. PARSE(cur sor _nane, 'DELETE FROM' || p_tab_nane,
DBVS SQL. NATI VE) ;

p_rows_del [= DBMS_SQ@.. EXECUTE (cursor_nane);
DBMVE_ SQL. CLOSE_CURSOR(cur sor _nane) ;

END;

/

Use dynamic SQL to delete rows

VARI ABLE del et ed NUMVBER
EXECUTE delete all _rows('enpl oyees', :deleted)
PRI NT del et ed

PLISOL procedure successfully completed.

I DELETED

ORrRACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

14-9

Using the EXECUTE | MVEDI ATE Statement

Use the EXECUTE | MVEDI ATE statement for native
dynamic SQL with better performance.

EXECUTE | MMEDI ATE dynam c_stri ng
[NTO {define_variabl e

[, define variable] ... | record}]
[USING [I NN QUT| I N OQUT] bi nd_ar gunent
[, [INQUT|IN QUT] bind _argunent]

| NTOis used for single-row queries and specifies
the variables or records into which column values
are retrieved.

USI NGis used to hold all bind arguments. The
default parameter mode is | N.

ORrRACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

Dynamic SQL Using EXECUTE | MVEDI ATE

CREATE PROCEDURE del rows

(p_table name |IN VARCHAR?,

p_rows _del d QUT NUMBER)
| S

BEQ N
EXECUTE INNEDIATE delete fron1 | | p_t abl e_nane;

FProcedure created.

VARI ABLE del et ed NUMBER

EXECUTE del rows('test enpl oyees', : del et ed)
PRI NT del et ed

PL/GOL procedure successfully completed.

OoORrRACLE
14-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the DBMS DDL Package

The DBMS DDL Package:

Provides access to some SQL DDL statements
from stored procedures

Includes some procedures:
ALTER COWPI LE (object_type, owner, object_name)

DBMS_DDL. ALTER _COWPI LE(' PROCEDURE' , ' A USER , ' QUERY_EMP')

ANALYZE OBJECT (object_type, owner, name,
method)
DBVS_DDL. ANALYZE OBJECT(' TABLE' ,' A USER ,' JOBS',' COVWPUTE')

Note: This package runs with the privileges of calling
user, rather than the package owner SYS.

ORrRACLE

14-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Using DBMS JOB for Scheduling

DBMS JOB Enables the scheduling and execution of
PL/SQL programs:

Submitting jobs

Executing jobs

Changing execution parameters of jobs
Removing jobs

Suspending Jobs

OoORrRACLE
14-13 Copyright © Oracle Corporation, 2001. All rights reserved.

DBMS JOB Subprograms

Available subprograms include:
SUBM T

REMOVE
CHANGE
VHAT
NEXT DATE
| NTERVAL
BROKEN
RUN

ORrRACLE

14-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Submitting Jobs

You can submit jobs by using DBM5 J0OB. SUBM T.
Available parameters include:
JOB QOUT BI NARY | NTEGER

VWHAT | N VARCHARZ

NEXT_DATE I N DATE DEFAULT SYSDATE
| NTERVAL | N VARCHAR2 DEFAULT ' NULL'
NO PARSE | N BOOLEAN DEFAULT FALSE

OoORrRACLE
14-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Submitting Jobs

Use DBMS JOB. SUBM T to place a job to be executed
In the job queue.

VARI ABLE j obno NUMBER
BEG N
DBMS JOB. SUBM T (
job => :jobno,
what => ' OVER PACK. ADD DEPT('"' EDUCATI ON ', 2710);",
next date => TRUNC(SYSDATE + 1),
interval => ' TRUNC(SYSDATE + 1)'
);
COWM T,
END,;
/
PRI NT j obno

PLISOL procedure successtully completed.

ORrRACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

14-17

Changing Job Characteristics

DBMS JOB. CHANGE: Changes the WHAT, NEXT_DATE,
and | NTERVAL parameters

DBMS_JOB. | NTERVAL: Changes the | NTERVAL
parameter

DBMS JOB. NEXT_DATE: Changes the next execution
date

DBMS JOB. WHAT: Changes the WHAT parameter

ORrRACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

Running, Removing, and Breaking Jobs

DBMS JOB. RUN: Runs a submitted job immediately

DBMS JOB. REMOVE: Removes a submitted job from
the job queue

DBMS JOB. BROKEN. Marks a submitted job as
broken, and a broken job will not run

ORrRACLE

14-18 Copyright © Oracle Corporation, 2001. All rights reserved.

14-19

Viewing Information on Submitted Jobs

Use the DBA JOBS dictionary view to see the
status of submitted jobs.

SELECT job, | og user, next _date, next_sec,
br oken, what
FROM DBA JOBS;

Use the DBA JOBS RUNNI NGdictionary view to
display jobs that are currently running.

ORrRACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

Using the DBMs OUTPUT Package

The DBMS_ OUTPUT package enables you to output
messages from PL/SQL blocks. Available procedures

Include:
PUT

NEW LI NE
PUT LI NE

GET LINE

GET LI NES
ENABLE/ DI SABLE

ORrRACLE

14-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Interacting with Operating System Files

UTL_FI LE Oracle-supplied package:
Provides text file I/O capabilities
|s available with version 7.3 and later
The DBMS LOB Oracle-supplied package:
Provides read-only operations on external BFI LES

Is available with version 8 and later
Enables read and write operations on internal LCBs

ORrRACLE

14-21 Copyright © Oracle Corporation, 2001. All rights reserved.

What Is the UTL_FI LE Package?

Extends 1/O to text files within PL/SQL

Provides security for directories on the server
through theinit. orafile

Is similar to standard operating system |/O
Open files
Get text
Put text
Close files

Use the exceptions specific to the UTL_FI LE
package

ORrRACLE

14-22 Copyright © Oracle Corporation, 2001. All rights reserved.

File Processing Using the
UTL_FI LE Package

!

Get lines Yes
mmwa from the

_ Close
lines to the

Put lines process? text file

Open the

text file

into the
text file

ORrRACLE

14-23 Copyright © Oracle Corporation, 2001. All rights reserved.

UTL FI LEProcedures and Functions

Function FOPEN

Function | S_OPEN

Procedure GET LI NE

Procedure PUT, PUT LINE, PUTF
Procedure NEW LI NE

Procedure FFLUSH

Procedure FCLOSE, FCLOSE ALL

ORrRACLE

14-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Exceptions Specific to the UTL_FI LE
Package

| NVALI D_PATH
| NVALI D_MODE

| NVALI D_FI LEHANDLE
| NVALI D_OPERATI ON
READ ERROR

WRI TE_ERROR

| NTERNAL ERROR

ORrRACLE

14-25 Copyright © Oracle Corporation, 2001. All rights reserved.

The FOPENand | S _OPEN Functions

FUNCTI ON FOPEN

(location I N VARCHARZ,
filename I N VARCHARZ,
open_node | N VARCHAR2)

RETURN UTL_FI LE. FI LE TYPE;

FUNCTI ON | S_OPEN
(file_handle IN FI LE TYPE)
RETURN BOOLEAN,

ORrRACLE

14-26 Copyright © Oracle Corporation, 2001. All rights reserved.

Using UTL_FI LE

sal status. sql

CREATE OR REPLACE PROCEDURE sal st at us
(p_filedir IN VARCHAR2, p_filenane | N VARCHAR2)
| S
v_filehandl e
CURSOR enp_info IS

SELECT | ast _nane, salary, departnent id

FROM enpl oyees

ORDER BY departnent i d;

v_newdept no enpl oyees. depart nent i d% YPE;

v_ol ddept no enpl oyees. departnent i dAdYPE : = O;
BEG N

v_filehandl e :=JUTL_FI LE. FOPEN (p_filedir, p_filenane,'w);
UTL_FI LE. PUTF [v_fil ehandl e, SALARY REPORT: GENERATED ON

o\ n', SYSDATE):

UTL_FI LE. NEW LI NE|(v_fil ehandl e):

FOR v_enp rec IN enp_info LOCP
v_newdeptno := v_enp_rec. departnent id;

ORrRACLE

14-27 Copyright © Oracle Corporation, 2001. All rights reserved.

Using UTL FI LE

sal status. sql

| F v_newdeptno <> v_ol ddept no THEN
(v_fi | ehandl e, ' DEPARTMENT: %\ n',
v_enp_rec. departnent id);
END | F;
(v _filehandle,' EMPLOYEE: % earns: %\n',
v_enp rec.last_nanme, v_enp_rec.salary);
v_ol ddeptno : = v_newdept no;
END LOOP;

v_filehandle, '*** END OF REPORT ***');
fi | ehandl e) ;
EXCEPTI ON
RAI SE_APPLI CATI ON_ERROR (-20001, 'Invalid File.");

RAI SE_APPLI CATI ON_ERRCR (-20002, 'Unable to wite to
file);

END sal st at us;
/

ORrRACLE

14-28 Copyright © Oracle Corporation, 2001. All rights reserved.

14-29

The UTL_HTTP Package

The UTL_HTTP package:

Enables HTTP callouts from PL/SQL and SQL to
access data on the Internet

Contains the functions REQUEST and
REQUEST PI ECES which take the URL of a site as a

parameter, contact that site, and return the data
obtained from that site

Requires a proxy parameter to be specified in the
above functions, if the client is behind a firewall

Raises | NI T_FAI LEDor REQUEST_FAI LED
exceptions if HTTP call fails

Reports an HTML error message if specified URL
IS not accessible

ORrRACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

14-30

Using the UTL_HTTP Package

SELECT UTL_HTTP. REQUEST(' http://ww. oracl e.com ,
' edu- proxy. us.oracle.com)

exCracle Corparatior

rnation about C

ORrRACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

Using the UTL_TCP Package

The UTL_TCP Package:

Enables PL/SQL applications to communicate with
external TCP/IP-based servers using TCP/IP

Contains functions to open and close connections,
to read or write binary or text data to or from a
service on an open connection

Requires remote host and port as well as local host
and port as arguments to its functions

Raises exceptions if the buffer size is too small,
when no more data is available to read from a
connection, when a generic network error occurs, or
when bad arguments are passed to a function call

ORrRACLE

14-31 Copyright © Oracle Corporation, 2001. All rights reserved.

Oracle-Supplied Packages

Other Oracle-supplied packages include:

DBVS_ALERT DBVS_SHARED POOL
DBVS_APPLI CATI ON_| NFO DBVS_ TRANSACTI ON
DBVS_DESCRI BE DBVS_UTI LI TY
DBVB LOCK

DBMS_SESSI ON

OoORrRACLE
14-32 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

In this lesson, you should have learned how to:

Take advantage of the preconfigured packages
that are provided by Oracle

Create packages by using the cat proc. sgl script
Create packages individually.

OoORrRACLE
14-37 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 14 Overview

This practice covers using:
DBMS SQL for dynamic SQL
DBMS DDL to analyze a table
DBMS JOBto schedule a task
UTL FI LEto generate text reports

14-38 Copyright © Oracle Corporation, 2001. All rights reserved.

ORrRACLE

Manipulating L lects

Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

Compare and contrast LONGand large object (LOB)
data types

Create and maintain LOB data types
Differentiate between internal and external LOBs
Use the DBMS LOB PL/SQL package
Describe the use of temporary LOBs

oRrRACLE
15-2 Copyright © Oracle Corporation, 2001. All rights reserved.

What Is a LOB?

LOBs are used to store large unstructured data such as
text, graphic images, films, and sound waveforms.

“Four score and seven years ago

our fathers brought forth upon

this continent, a new nation,

concei ved in LIBERTY, and dedi cated
to the proposition that all nen

are created equal .”

OoORrRACLE

15-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Contrasting LONGand LOB Data Types

06w 106

Single LONGcolumn per table | Multiple LOB columns per table
Up to 2 GB Up to 4 GB

SELECT returns data SELECT returns locator

Data stored in-line Data stored in-line or out-of-line

Sequential access to data Random access to data

orRACLE
15-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Anatomy of a LOB

The LOB column stores a locator to the LOB's value.

LOB locator

LOB value

LOB column
of a table

oRrRACLE
15-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Internal LOBs

The LOB value is stored in the database.

“Four score and seven years ago

our fathers brought forth upon

this continent, a new nation,

concei ved in LIBERTY, and dedi cated
to the proposition that all men

are created equal .”

OoORrRACLE

15-6 Copyright © Oracle Corporation, 2001. All rights reserved.

15-7

Managing Internal LOBs

To interact fully with LOB, file-like interfaces are
provided in:

PL/SQL package DBVS LOB
Oracle Call Interface (OCI)

Oracle Objects for object linking and embedding
(OLE)

Pro*C/C++ and Pro*COBOL precompilers
JDBC

The Oracle server provides some support for LOB
management through SQL.

oRrRACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

What Are BFI LES?

The BFI LE data type
supports an external or
file-based large object as:

* Attributes in an object type
* Column values in atable

Movie
(BFI LE)

oRrRACLE
15-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Securing BFI LEs

ﬁ

User

Access
permissions
®

)
!
|
!
!

\i

Movie
(BFI LE)

oRrRACLE
15-9 Copyright © Oracle Corporation, 2001. All rights reserved.

A New Database Object: DI RECTCRY

____,>‘-~4//

User

DI RECTORY

LOB PATH=
'/ oracl e/l ob/"'

Movie
(BFI LE)

oRrRACLE
15-10 Copyright © Oracle Corporation, 2001. All rights reserved.

15-11

Guidelines for Creating DI RECTORY
Objects

Do not create DI RECTORY objects on paths with
database files.

Limit the number of people who are given the
following system privileges:

CREATE ANY DI RECTORY

DROP ANY DI RECTORY

All DI RECTORY objects are owned by SYS.

Create directory paths and properly set
permissions before using the DI RECTORY object

so that the Oracle server can read the file.

oRrRACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

15-12

Managing BFI LEs

Create an OS directory and supply files.

Create an Oracle table with a column that holds
the BFI LE data type.

Create a DI RECTORY object.

Grant privileges to read the DI RECTORY object to
users.

Insert rows into the table by using the BFI LENANVE
function.

Declare and initialize a LOB locator in a program.
Read the BFI LE.

oRrRACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

Preparing to Use BFI LEs

Create or modify an Oracle table with a column
that holds the BFI LE data type.

ALTER TABLE enpl oyees
ADD enp_vi deo BFI LE;

Create a DI RECTORY object by using the CREATE
DI RECTORY command.

CREATE DI RECTORY di r _nane
AS os_pat h;

Grant privileges to read the DI RECTORY object to
users.

GRANT READ ON DI RECTORY dir_nane TO
user | r ol e| PUBLI C,

oRrRACLE
15-13 Copyright © Oracle Corporation, 2001. All rights reserved.

The BFI LENAME Function

Use the BFI LENANME function to initialize a BFI LE
column.

FUNCTI ON BFI LENAMVE (directory _alias I N VARCHARZ,

filenane | N VARCHAR2)

RETURN BFI LE;

orRACLE
15-14 Copyright © Oracle Corporation, 2001. All rights reserved.

15-15

Loading BFI LES

CREATE OR REPLACE PROCEDURE | oad enp bfile
(p_file_loc IN VARCHAR2) IS
v file BFI LE;
v_filename VARCHAR2(16);
CURSOR enp_cursor | S
SELECT first _nane FROM enpl oyees
WHERE departnent _id = 60 FOR UPDATE;
BEG N
FOR enp_record I N enp_cursor LOOP
v filename := enp_ record first name || '.bnp';
' v_filename);

SET enp_ V|deo =v_file
VWHERE CURRENT OF enp_cursor,;
DBMS_OUTPUT. PUT_LI NE(' LOADED FILE: '|]|v_filenane

|| * SIzE: ' || [DBMS_LOB. GETLENGTH[v_file));
DBVS_LOB. FI LECLOSE[v_file);

END LOOP;
END | oad_enp_bfil e;
/
oRrRACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

Loading BFI LES

Use the DBMS LOB. FI LEEXI STSfunction to vefiry

that the file exists in the operating system. The function
returns O if the file does not exist, and returns 1 if the

file does exist.

15-16

CREATE OR REPLACE PROCEDURE | oad_enp_bfile
(p_file_loc I N VARCHARZ)

| S
v_file BFI LE; v_filenane VARCHAR2(16) ;

v_file_ exists BOOLEAN,
CURSOR enp_cursor IS ...

BEG N
FOR enp_record I N enp_cursor LOOP
v filenanme := enp_record.first _nane || '.bnp';
v file := BFILENAME (p_file loc, v_filenane);
v_file_exists :=[(DBVS_LOB. FI LEEXISTS(v_file) = 1);
|F v file exists THEN
DBMS LOB. FI LEOPEN (v _file);

OoORrRACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

Migrating from LONGto LOB

The Oracle9i server allows migration of LONGcolumns to
LOB columns.

Data migration consists of the procedure to move
existing tables containing LONGcolumns to use LOBs.

ALTER TABLE [<schenma>.] <tabl e nane>

MODI FY (<l ong col nane> {CLOB | BLOB | NCLOB}

Application migration consists of changing existing LONG
applications for using LOBs.

oRrRACLE
15-17 Copyright © Oracle Corporation, 2001. All rights reserved.

15-18

Migrating From LONGto LOB

Implicit conversion: LONG (LONG RAW or a
VARCHARZ2(RAW variable to a CLOB (BLOB) variable, and

vice versa

Explicit conversion:
TO CLOB() converts LONG VARCHAR2, and CHARto CLOB

TO BLOB() converts LONG RAWand RAWto BLOB

Function and Procedure Parameter Passing:
CLCBs and BLCBs as actual parameters

VARCHAR2, LONG RAW and LONG RAWare formal
parameters, and vice versa

LOB data is acceptable in most of the SQL and PL/SQL
operators and built-in functions

OoORrRACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

15-19

The DBV LOB Package

Working with LOB often requires the use of the
Oracle-supplied package DBMS LOB.

DBMS LOB provides routines to access and
manipulate internal and external LOBs.

Oracle9i enables retrieving LOB data directly using
SQL, without using any special LOB API.

In PL/SQL you can define a VARCHARZ2 for a CLOB
and a RAWfor BLOB.

oRrRACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

15-20

The DBV LOB Package

Modify LOB values:

APPEND, COPY, ERASE, TRI M WRI TE, LOADFROMFI LE
Read or examine LOBvalues:

GETLENGTH, | NSTR, READ, SUBSTR

Specific to BFI LEs:

FI LECLOSE, FI LECLOSEALL, FI LEEXI STS,
FI LEGETNAME, FI LEI SOPEN, FI LEOPEN

oRrRACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

15-21

The DBV LOB Package

NULL parameters get NULL returns.

Offsets:
BLOB, BFI LE: Measured in bytes
CLOB, NCLOB: Measured in characters

There are no negative values for parameters.

oRrRACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

DBM5S LOB. READ and DBMs LOB. WRI TE

PROCEDURE READ (
| obsrc I N BFI LE| BLOB| CLOB
anmount | N QUT Bl NARY_ | NTEGER,
of fset | N I NTECER
buf fer OUT RAW VARCHARZ2)

PROCEDURE WRI TE (
| obdst I N OQUT BLOB| CLOB,
anmount | N OQUT Bl NARY | NTEGER,
of fset IN INTEGER : = 1,
buffer IN RAWVARCHAR2) -- RAWfor BLOB

oRrRACLE
15-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Adding LOB Columns
to a Table

ALTER TABLE enpl oyees ADD
(resume CLOB,

pi cture BLOB) ;

Table altered.

oRrRACLE
15-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Populating LOB Columns

Insert arow into a table with LOB columns:
| NSERT | NTO enpl oyees (enpl oyee id, first_ nane,
| ast _nane, email, hire _date, job id,
sal ary, resune, picture)

VALUES (405, 'Marvin', '"Ellis', 'MELLIS , SYSDATE,
' AD ASST', 4000, EMPTY_CLOB(), NULL);

1 row created.

Initialize a LOB column using the EMPTY_BLOB() function:

UPDATE enpl oyees
SET resune = 'Date of Birth: 8 February 1951',
picture = EMPTY _BLOB()

VWHERE enpl oyee id = 405;

1 row updated.

orRACLE
15-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Updating LOB by Using SQL

UPDATE CLOB column

UPDATE enpl oyees
SET resune = "Date of Birth: 1 June 1956°

VWHERE enpl oyee id 170;

oRrRACLE
15-26 Copyright © Oracle Corporation, 2001. All rights reserved.

Updating LOB by Using DBMS LOB In
PL/SOL
DECLARE

| obl oc CLOB; -- serves as the LOB | ocator
t ext VARCHAR2(32767) : = Resi gned: 5 August 2000';
anount NUMBER ; -- anount to be witten
of fset | NTECER, -- Where to start witing
BEG N
SELECT resune | NTO | obl oc
FROM enpl oyees
VWHERE enpl oyee id = 405 FOR UPDATE;
of fset :=|DBMS LOB. GETLENGTH(| obl oc)| + 2;
anmount : = | ength(text);
DBNB_LOB.WRIIEJ(IobIoc, anount, offset, text);
t ext .= ' Resigned: 30 Septenber 2000';
SELECT resune | NTO | obl oc
FROM enpl oyees
VWHERE enployee id = 170 FOR UPDATE;
anmopunt : = length(text);
DBVS LOB. WRI TEAPPEND(| obl oc, anount, text);
COW T,
END;

Copyright © Oracle Corporation, 2001. All rights reserved.

Selecting CLOB Values by Using SQL

SELECT enpl oyee id, last _nane , resune -- CLOB
FROM enpl oyees

VWHERE enpl oyee id IN (405, 170);

oRrRACLE
15-28 Copyright © Oracle Corporation, 2001. All rights reserved.

Selecting CLOB Values by Using DBMs LOB

DBMS LOB. SUBSTR(lob_column, no_of chars, starting)
DBMS LOB. | NSTR (lob_column, pattern)

SELECT DBMS LOB. SUBSTR (resune, 5, 18),
DBVS LOB. I NSTR (resune,' ="')

FROM enpl oyees

VWHERE enployee id IN (170, 405);

OoORrRACLE

15-29 Copyright © Oracle Corporation, 2001. All rights reserved.

Selecting CLOB Values in PL/SQL

DECLARE

t ext VARCHAR2(4001);
BEG N

SELECT
FROM enpl oyees

VWHERE enpl oyee id = 170;

DBVMS OQUTPUT. PUT _LINE('text is: "|| text);
END;
/

text 1z Date of Birth: 1 June 1356 Resigned = 30 September 2000
PLISQL procedure successfully completed.

oRrRACLE
15-30 Copyright © Oracle Corporation, 2001. All rights reserved.

Removing LOBs

Delete a row containing LOBs:

DELETE
FROM enpl oyees

VWHERE enpl oyee id = 405;

1 row deleted.

Disassociate a LOB value from arow:

UPDATE enpl oyees
SET resune = EMPTY _CLOB()
VWHERE enpl oyee id = 170;

1 row updated.

oRrRACLE
15-31 Copyright © Oracle Corporation, 2001. All rights reserved.

Temporary LOBs

Temporary LOBs:

Provide an interface to support creation of LOBs
that act like local variables

Can be BLOBs, CLOBs, or NCLOBs

Are not associated with a specific table

Are created using DBVS LOB. CREATETEMPORARY
procedure

Use DBVS LOBroutines
The lifetime of a temporary LOBis a session.

Temporary LOBs are useful for transforming data
In permanent internal LOBs.

OoORrRACLE

15-32 Copyright © Oracle Corporation, 2001. All rights reserved.

15-33

Creating a Temporary LOB

PL/SQL procedure to create and test a temporary LOB:

CREATE OR REPLACE PROCEDURE | sTenpLOBOpen
(p_lob loc IN QUT BLOB, p_retval QOUT | NTEGER)
| S
BEG N
-- Create a tenporary LOB
DBMS LOB. CREATETEMPCORARY (p_l ob | oc, TRUE);
-- see if the LOBis open: returns 1 if open
p retval := DBMS LOB.|1SOPEN (p_lob | oc);
DBMS QUTPUT. PUT_LINE (' The file returned a val ue
|| p_retval);

-- free the tenporary LOB
DBVS_LOB. FREETEMPORARY (p_l ob_| oc);
END;

Procedure created.

OoORrRACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

In this lesson, you should have learned how to:

Identify four built-in types for large objects: BLOB,
CLOB, NCLOB, and BFI LE

Describe how LOBs replace LONGand LONG RAW

Describe two storage options for LOBs:
The Oracle server (internal LOBs)
External host files (external LCOBs)

Use the DBMs LOB PL/SQL package to provide
routines for LOB management

Use temporary LOBs in a session

orRACLE
15-34 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 15 Overview

This practice covers the following topics:

Creating object types, using the new data types
CLOB and BLOB

Creating a table with LOB data types as columns

Using the DBMS _LOB package to populate and
Interact with the LOB data

oRrRACLE
15-35 Copyright © Oracle Corporation, 2001. All rights reserved.

CreatingfPatab ers

Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

Describe different types of triggers
Describe database triggers and their use
Create database triggers

Describe database trigger firing rules
Remove database triggers

ORACLE
16-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Types of Triggers

A trigger:

Is a PL/SQL block or a PL/SQL procedure
associated with a table, view, schema, or the
database

Executes implicitly whenever a particular event
takes place

Can be either:

Application trigger: Fires whenever an event occurs
with a particular application

Database trigger: Fires whenever a data event (such
as DML) or system event (such as logon or
shutdown) occurs on a schema or database

ORACLE
16-3 Copyright © Oracle Corporation, 2001. All rights reserved.

16-4

Guidelines for Designing Triggers

Design triggers to:
Perform related actions
Centralize global operations

Do not design triggers:

Where functionality is already built into the Oracle
server

That duplicate other triggers

Create stored procedures and invoke them in a
trigger, if the PL/SQL code is very lengthy.

The excessive use of triggers can result in
complex interdependencies, which may be difficult
to maintain in large applications.

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

Database Trigger: Example

Application

| NSERT | NTO EMPLOYEES

EMPLOYEES table l CHECK SAL trigger

G000

ORACLE
16-5 Copyright © Oracle Corporation, 2001. All rights reserved.

16-6

Creating DML Triggers

A triggering statement contains:
Trigger timing
For table: BEFORE, AFTER
For view: | NSTEAD OF

Triggering event: | NSERT, UPDATE, or DELETE
Table name: On table, view

Trigger type: Row or statement

VWHEN clause: Restricting condition

Trigger body: PL/SQL block

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

DML Trigger Components

Trigger timing: When should the trigger fire?

BEFORE: Execute the trigger body before the
triggering DML event on a table.

AFTER Execute the trigger body after the
triggering DML event on a table.

| NSTEAD OF: Execute the trigger body instead of

the triggering statement. This is used for views
that are not otherwise modifiable.

ORACLE
16-7 Copyright © Oracle Corporation, 2001. All rights reserved.

DML Trigger Components

Triggering user event: Which DML statement causes
the trigger to execute? You can use any of the
following:

| NSERT
UPDATE

DELETE

ORACLE
16-8 Copyright © Oracle Corporation, 2001. All rights reserved.

DML Trigger Components

Trigger type: Should the trigger body execute for each
row the statement affects or only once?

Statement: The trigger body executes once for the
triggering event. This is the default. A statement
trigger fires once, even if no rows are affected at all.

Row: The trigger body executes once for each row
affected by the triggering event. A row trigger is not
executed if the triggering event affects no rows.

ORACLE
16-9 Copyright © Oracle Corporation, 2001. All rights reserved.

DML Trigger Components

Trigger body: What action should the trigger perform?

The trigger body is a PL/SQL block or a call to a
procedure.

ORACLE
16-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Firing Sequence

Use the following firing sequence for a trigger on a
table, when a single row is manipulated:

DML statement

| NSERT | NTO departnents (departnent id,
departnent _name, |ocation_id)

VALUES (400, 'CONSULTI NG , 2400);

1 rowr created.

Triggering action
—> BEFORE statement

.. trigger

— 4 BEFORE row trigger
[5l [Ad400 | .

—nm | AFTERrow tngger

—> AFTER statement trigger

ORACLE
16-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Firing Sequence

Use the following firing sequence for a trigger on a
table, when many rows are manipulated:

UPDATE enpl oyees

SET salary = salary * 1.1

1
VWHERE departnent id = 30;

& rows updated.

—> BEFORE statement trigger

' LAST NMAME | DEPARTMENT ID 5 .
.. e | BEFORE row tngger

.................................. o j; AFTER row trlgger

S 17 |Tobias I — &> BEFORE row trigger
....................................... Uk — — ... ;;; AFTER row trigger

—> AFTER statement trigger

ORACLE
16-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Syntax for Creating
DML Statement Triggers

Syntax:

CREATE [OR REPLACE] TRI GGER trigger nane
timng
eventl [OR event2 OR event 3]

ON t abl e_nane
trigger body

Note: Trigger names must be unique with respect to
other triggers in the same schema.

ORACLE
16-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating DML Statement Triggers

Example:

CREATE OR REPLACE TRI GGER secure_enp
BEFORE | NSERT ON enpl oyees
BEGQ N
| F (TO CHAR(SYSDATE, 'DY') IN ('SAT',"SUN)) OR
(TO CHAR(SYSDATE, ' HH24: M ')
NOT BETWEEN ' 08: 00" AND ' 18: 00')
THEN RAI SE_APPLI CATI ON_ERROR (- 20500, ' You may

I nsert into EMPLOYEES table only
duri ng busi ness hours."');

END | F;
END;
/

Trge

ORACLE
16-14 Copyright © Oracle Corporation, 2001. All rights reserved.

16-15

Testing SECURE _EMP

| NSERT | NTO enpl oyees (enpl oyee id, |ast_ nane,
first_nanme, email, hire _date,
job_id, salary, departnent id)
VALUES (300, 'Smth', 'Rob', 'RSM TH , SYSDATE,
"I T_PROG, 4500, 60);

IMSEET INTO employees (emplovee 1d, last name, first name, email,
= o

mnsert mte EMPLOYEES table only during business hours.
TTEE_EMP", line 4
zecution of tigger PLEQL SECTEE EMNEP

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

Using Conditional Predicates

CREATE OR REPLACE TRI GGER secure_enp
BEFORE | NSERT OR UPDATE OR DELETE ON enpl oyees
BEGQ N
| F (TO CHAR (SYSDATE,'DY') IN ('SAT',"SUN)) OR
(TO CHAR (SYSDATE, 'HH24') NOT BETWEEN ' 08" AND ' 18')
THEN
| F | DELETI NG |THEN
RAI SE_APPLI CATI ON_ERROR (- 20502, ' You nay delete fro
EMPLOYEES tabl e only during business hours.');
ELSI F [1 NSERTI NG [THEN
RAI SE_APPLI CATI ON_ERROR (- 20500, ' You may insert into
EMPLOYEES tabl e only during business hours.');
ELSI F |UPDATI NG (' SALARY') | THEN
RAI SE_APPLI CATI ON_ERROR (- 20503, ' You nay update
SALARY only during business hours."');

ELSE
RAI SE_APPLI CATI ON_ERROR (- 20504, ' You nmay update
EMPLOYEES table only during normal hours.');
END | F;
END | F;
END;

ORACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a DML Row Trigger

Syntax:

CREATE [OR REPLACE] TRI GGER trigger nane
timng
eventl [OR event 2 OR event 3]
ON t abl e _nane

[REFERENCI NG OLD AS old | NEW AS new
FOR EACH ROW

[WHEN (condi tion)]
trigger body

ORACLE

16-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating DML Row Triggers

CREATE OR REPLACE TRIGGER restrict_sal ary
BEFORE | NSERT OR UPDATE OF sal ary ON enpl oyees
FOR EACH ROW
BEG N
|F NOT (:NEWjob id IN ("AD PRES', 'AD VP'))
AND : NEW sal ary > 15000
THEN

RAI SE_APPLI CATI ON_ERROR (-20202, ' Enpl oyee
cannot earn this anount');

END | F;
END;
/

Trgs

ORACLE
16-18 Copyright © Oracle Corporation, 2001. All rights reserved.

16-19

Using OLD and NEWQualifiers

CREATE OR REPLACE TRI GGER audit _enp val ues
AFTER DELETE OR | NSERT OR UPDATE ON enpl oyees
FOR EACH ROW
BEGQ N
| NSERT | NTO audit _enp_table (user_nanme, tinestanp,
id, old |ast _nanme, new |ast nanme, old title,
new title, old salary, new salary)

VALUES (USER, SYSDATE, [OLD. enpl oyee id
"OLD. Tast_nane| | NEWast_name| [OLD.] ob_iad
| |

. OLD. salary| [NEWsal ary|);

Trigger created.

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

Using OLD and NEWQualifiers:
Example Using Audit _Enp Tabl e

| NSERT | NTO enpl oyees
(enpl oyee id, last _nanme, job id, salary,
VALUES (999, 'Tenp enp', 'SA REP', 1000, ...);

UPDATE enpl oyees

SET salary = 2000, last _nane = 'Smth'
VWHERE enpl oyee id = 999;

SELECT user nane, tinmestanp, ... FROM audit _enp table

ID |OLD_LAST N| ITLE |OLD_SALARY NEW SALA

ORACLE
16-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Restricting a Row Trigger

CREATE OR REPLACE TRI GGER derive_comm ssi on_pct
BEFORE | NSERT OR UPDATE OF sal ary ON enpl oyees
FOR EACH ROW
VHEN kNE\Nj ob id ="'SA REFP)

BEG N
| F | NSERTI NG

THEN : NEW conm ssi on_pct : = O;
ELSIF : OLD. comm ssion_pct IS NULL
THEN : NEW comm ssi on_pct : = O;
ELSE
: NEW conmmi ssion_pct := :QOLD. comm ssion_pct + 0.05;
END | F;
END;
/

ORACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

| NSTEAD OF Triggers

Application

| NSERT | NTO ny_vi ew

| NSERT ===
TABLE1

| NSTEAD OF > HEmm

u - I

= Trigger — 1
N
-

UPDATE geee

MY VI EW TABLE2 Hiae

el | | |

[]

ORACLE
16-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating an | NSTEAD OF Trigger

Syntax:

CREATE [OR REPLACE] TRI GGER trigger nane
| NSTEAD OF
eventl [OR event2 OR event 3]

ON vi ew_nane

[REFERENCI NG OLD AS old | NEW AS new
[FOR EACH ROW
trigger body

ORACLE

16-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating an | NSTEAD OF Trigger

| NSERT into EMP_DETAI LS that is based on EMPLOYEES and
DEPARTMENTS tables

| NSERT | NTO enp_detail s(enployee id, ...)
VALUES(9001, ' ABBOTT' , 3000, 10, ' abbott.mail.com ,' HR MAN);

| NSTEAD OF | NSERT
into EMP_DETAI LS

ORACLE

16-26 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating an | NSTEAD OF Trigger

| NSERT into EMP_DETAI LS that is based on EMPLOYEES and
DEPARTMENTS tables

| NSERT | NTO enp_detail s(enployee id, ...)
VALUES(9001, ' ABBOTT' , 3000, 10, ' abbott.mail.com ,' HR MAN);

| NSTEAD OF | NSERT
into EMP_DETAI LS

| NSERT into UPDATE
NEW EMPS NEW DEPTS

DEPARTMENT_ID |IDEPARTMENT_NAME [TOT_DEPT_S2

10 |Adrinistration

9001 |ABBOTT | 3000 | 10 |abbott.m

ORACLE
16-27 Copyright © Oracle Corporation, 2001. All rights reserved.

Differentiating Between Database Triggers
and Stored Procedures

Defined with CREATE TRI GGER Defined with CREATE PROCEDURE

Data dictionary contains source | Data dictionary contains source code
code in USER TRI GGERS in USER SOURCE

Implicitly invoked Explicitly invoked

COW T, SAVEPA NT, and COW T, SAVEPO NT, and ROLLBACK
ROLLBACK are not allowed are allowed

ORACLE
16-28 Copyright © Oracle Corporation, 2001. All rights reserved.

Differentiating Between Database Triggers
and Form Builder Triggers

| NSERT | NTO EMPLOYEES

EMPLOYEEStable l CHECK SAL trigger

ﬁ

17000

'+|| |E| |E| B E F OQE
| NSERT
row

ORACLE
16-29 Copyright © Oracle Corporation, 2001. All rights reserved.

Managing Triggers

Disable or reenable a database trigger:
ALTER TRI GGER trigger _nane DI SABLE | ENABLE

Disable or reenable all triggers for a table:
ALTER TABLE table nane DI SABLE | ENABLE ALL TRI GGERS

Recompile atrigger for a table:

ALTER TRI GGER tri gger name COWPI LE

ORACLE

16-30 Copyright © Oracle Corporation, 2001. All rights reserved.

DROP TRI GGER Syntax

To remove atrigger from the database, use the DROP
TRI GGER syntax:

DROP TRI GGER tri gger nane;

Example:

DROP TRI GGER secur e_enp;

Trigeer dropped.

Note: All triggers on a table are dropped when the
table is dropped.

ORACLE
16-31 Copyright © Oracle Corporation, 2001. All rights reserved.

16-32

Trigger Test Cases

Test each triggering data operation, as well as
nontriggering data operations.

Test each case of the WHEN clause.

Cause the trigger to fire directly from a basic data
operation, as well as indirectly from a procedure.

Test the effect of the trigger upon other triggers.
Test the effect of other triggers upon the trigger.

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

Trigger Execution Model
and Constraint Checking

1. Execute all BEFORE STATEMENT triggers.

2. Loop for each row affected:
a. Execute all BEFORE ROMtriggers.
b. Execute all AFTER ROMriggers.

3. Execute the DML statement and perform integrity
constraint checking.

4. Execute all AFTER STATEMENT triggers.

ORACLE
16-33 Copyright © Oracle Corporation, 2001. All rights reserved.

16-34

Trigger Execution Model and Constraint
Checking: Example

UPDATE enpl oyees SET|departnent 1d = 999

VWHERE enpl oyee id = 170;
-- Integrity constraint violation error

CREATE OR REPLACE TRI GGER constr_enp trig
AFTER UPDATE ON enpl oyees

FOR EACH ROW
BEG N

| NSERT | NTO depart nents

VALUES (999, 'dept999', 140, 2400);

END,
/

UPDATE enpl oyees SET |depart nent _
VWHERE enpl oyee id = 170;
-- Successful after trigger is fired

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

A Sample Demonstration for Triggers
Using Package Constructs

DML into AUDI T_EMP_TRI G VAR PACK
EMPLOYEES table FOR EACH ROW package
Increment variables |

—_— g —
—_—] —
—)l—)

AUDI T_EMP_TAB
AFTER STATEMENT
Copy and then reset

variables
— —_—

AUDI T _TABLE

ORACLE
16-35 Copyright © Oracle Corporation, 2001. All rights reserved.

After Row and After Statement Triggers

CREATE OR REPLACE TRIGGER audit_enp_trig
AFTER UPDATE or | NSERT or DELETE on EMPLOYEES
FOR EACH ROW
BEGQ N
| F DELETI NG THEN var pack.set g del (1);
ELSI F | NSERTING THEN var pack.set g ins(1l);
ELSI F UPDATI NG (' SALARY")
THEN var pack.set g up_sal (1);
ELSE var pack.set g upd(1l);
END | F;

END audit _enp trig;
/

CREATE OR REPLACE TRI GGER audit _enp _tab
AFTER UPDATE or | NSERT or DELETE on enpl oyees
BEG N
audi t _enp;
END audit _enp_t ab;
/

ORACLE
16-36 Copyright © Oracle Corporation, 2001. All rights reserved.

Demonstration: VAR PACK Package
Specification

var _pack. sql

CREATE OR REPLACE PACKAGE var pack
| S
-- these functions are used to return the
-- val ues of package vari abl es
FUNCTI ON g _del RETURN NUVBER;
FUNCTI ON g _i ns RETURN NUVBER,
FUNCTI ON g _upd RETURN NUVBER;
FUNCTI ON g up_sal RETURN NUMBER;

-- these procedures are used to nodify the
-- values of the package vari abl es
PROCEDURE set g del (p_val IN NUMBER);

PROCEDURE set g ins (p_val |IN NUMBER);
PROCEDURE set g _upd (p_val IN NUMBER);
PROCEDURE set g up_sal (p_val |IN NUMBER);

END var pack;
/

ORACLE
16-37 Copyright © Oracle Corporation, 2001. All rights reserved.

Demonstration: Using the
AUDI T _EMP Procedure

CREATE OR REPLACE PROCEDURE audit _enmp IS
v_del NUVBER var _pack. g _del;
vV_ins NUMBER var _pack. g_ins;
vV_upd NUVBER var _pack. g_upd;
v_up_sal NUMBER var _pack. g up_sal;
BEG N
|IF v del + v_.ins + v upd '= 0 THEN
UPDATE audit table SET
del = del + v_del, ins =ins + v_ins,
upd = upd + v_upd
VWHERE user nanme=USER AND t abl enane=' EMPLOYEES
AND colum_nanme |'S NULL;
END | F;
|F v_up sal '=0 THEN
UPDATE audit table SET upd = upd + v_up_sal
VWHERE user nanme=USER AND t abl enane=' EMPLOYEES'
AND col umm_nane = ' SALARY';
END | F;
-- resetting gl obal variables in package VAR PACK
var _pack.set g del (0); var_pack.set g ins (0);

var pack.set g upd (0); var_pack.set g up_sal (0);
END audit _enp;

ORACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

Procedure Package Trigger

XXXXXXXXXXXXXXXXXX ‘\

VVVVVVVVVVVVVVVVVV --
XXXXXXXXXXXXXXXXXX

VVVVVVVVVVVVVVVVVV

XXXXXXXXXXXXXXXXXX

VVVVVVVVVVVVVVVVVV

XXXXXXXXXXXXXXXXXX

VVVVVVVVVVVVVVVVVV i

.

XXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXX
VVVVVVVVVVVVVVVVVV
XXXXXXXXXXXXXXXXXX

VVVVVVVVVVVVVVVVVV
XXXXXXXXXXXXXXXXXX

_ /

ORACLE
16-40 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 16 Overview

This practice covers the following topics:
Creating statement and row triggers

Creating advanced triggers to add to the
capabilities of the Oracle database

oOoORrRACLE
16-41 Copyright © Oracle Corporation, 2001. All rights reserved.

More THigger Congepts

Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

Create additional database triggers
Explain the rules governing triggers
Implement triggers

ORACLE
17-2 Copyright © Oracle Corporation, 2001. All rights reserved.

17-3

Creating Database Triggers

Triggering user event:
CREATE, ALTER or DRCP

Logging on or off
Triggering database or system event:

Shutting down or starting up the database
A specific error (or any error) being raised

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

Creating Triggers on DDL Statements

Syntax:

CREATE [OR REPLACE] TRI GGER trigger nane
timng
[ddl _eventl [OR ddl _event2 OR ...]]

ON { DATABASE| SCHEMA}
trigger body

ORACLE
17-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating Triggers on System Events

CREATE [OR REPLACE] TRI GGER trigger nane
timng
[dat abase_event1l [OR dat abase event2 OR ...]]

ON { DATABASE| SCHEMA}
trigger body

ORACLE
17-5 Copyright © Oracle Corporation, 2001. All rights reserved.

17-6

LOGON and LOGOFF Trigger Example

CREATE OR REPLACE TRIGGER | ogon_trig
AFTER LOGON ON SCHENA
BEG N
| NSERT INTO log trig table(user _id, |og date, action)
VALUES (USER, SYSDATE, 'Logging on');
END,
/

CREATE OR REPLACE TRI GGER | ogoff trig
BEFORE LOGOFF ON SCHEMA
BEGQ N

| NSERT INTO log trig table(user _id, |og _date, action)
VALUES (USER, SYSDATE, 'Logging off');

END,

/

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

17-7

CALL Statements

CREATE [OR REPLACE] TRI GGER trigger nane
timng
eventl [OR event2 OR event 3]
ON t abl e _nane

[REFERENCI NG OLD AS ol d | NEW AS new
[FOR EACH ROW

[WHEN condi ti on]
CALL procedure_ nane

CREATE OR REPLACE TRI GGER | og_enpl oyee
BEFORE | NSERT ON EMPLOYEES

CALL | og _executi on

/

Copyright © Oracle Corporation, 2001. All rights reserved.

ORACLE

Reading Data
from a Mutating Table

UPDATE

SET salary = 3400

VWHERE | ast _nane = 'Stiles';

CHECK_SALARY

EMPLOYEES table

Triggered table/
mutating table B Trigger event

ORACLE
17-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Mutating Table: Example

CREATE OR REPLACE TRI GGER check _sal ary
BEFORE | NSERT OR UPDATE OF salary, job id
ON enpl oyees
FOR EACH ROW
VWHEN (NEWjob id <> ' AD PRES')
DECLARE
v_m nsal ary enpl oyees. sal ar y%d YPE;
v_maxsal ary enpl oyees. sal ar y% YPE;
BEG N
SELECT M N(sal ary), MAX(sal ary)
| NTO v_mnsalary, v_naxsalary
FROM |enpl oyees
VWHERE job id = : NEW|ob id;
| F : NEWsalary < v_mnsalary OR
: NEW sal ary > v_naxsal ary THEN
RAI SE_APPLI CATI ON_ERROR(- 20505, ' Qut of range');
END | F;
END;
/

ORACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

17-10

Mutating Table: Example

UPDATE enpl oyees
SET salary = 3400
VWHERE | ast _nane = 'Stil es'

TPDATE employees

tahle PLEC 'L EIJIL"'TEE 13 mutating, trigeerfunction may not see it

- -|--|-|
| J_I.l

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

Implementing Triggers

You can use trigger for:
°* Security
Auditing
Data integrity
Referential integrity
Table replication
Computing derived data automatically
Event logging

ORACLE
17-11 Copyright © Oracle Corporation, 2001. All rights reserved.

17-12

Controlling Security Within
the Server

GRANT SELECT, | NSERT, UPDATE, DELETE
ON enpl oyees

TO cl erk: - - dat abase rol e
GRANT clerk TO scott;

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

Controlling Security
with a Database Trigger

CREATE OR REPLACE TRI GGER secure_enp
BEFORE | NSERT OR UPDATE OR DELETE ON enpl oyees

DECLARE
v_dummy VARCHAR2(1);
BEQ N
| F (TO CHAR (SYSDATE, 'DY') IN (' SAT',"' SUN))
THEN RAI SE_APPLI CATI ON_ERROR (-20506, ' You may only
change data during nornal business hours.');

END | F;

SELECT COUNT(*) | NTO v_dummy FROM hol i day

VWHERE hol i day_date = TRUNC (SYSDATE) ;

| F v_dumry > 0 THEN RAI SE_APPLI CATI ON_ERROR(- 20507,

"You may not change data on a holiday."');
END | F;

END;
/

ORACLE

17-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the Server Facility to
Audit Data Operations

AUDI T | NSERT, UPDATE, DELETE
ON departnents
BY ACCESS

VHENEVER SUCCESSFUL;

Audit succeeded.

The Oracle server stores the audit information in a
data dictionary table or operating system file.

ORACLE
17-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Auditing by Using a Trigger

CREATE OR REPLACE TRI GGER audit _enp_val ues

AFTER DELETE OR | NSERT OR UPDATE ON enpl oyees
FOR EACH ROW

BEG N

| F (audit _enp_package.g reason |'S NULL) THEN
RAI SE_APPLI CATI ON_ERROR (-20059, 'Specify a reason

for the data operation through the procedure SET REASON
of the AUDI T _EMP_PACKAGE bef ore proceedi ng.

l);
ELSE

| NSERT | NTO audit _enp_table (user _nane, tinmestanp, id,

old I ast _nane, new |ast nane, old title, newtitle,
ol d salary, new salary, comments)

VALUES (USER, SYSDATE, :OLD. enpl oyee id, :OLD.|ast_nane,
: NEW | ast_nane, :OLD.job_id, :NEWjob_id, :OLD. salary,
: NEW sal ary, audit_enp_package. g reason);
END | F;

END;

CREATE OR REPLACE TRI GGER cl eanup_audit _enp

AFTER | NSERT OR UPDATE OR DELETE ON enpl oyees
BEG N

audit _enp_package. g reason : = NULL;
END;

ORACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

Enforcing Data Integrity
Within the Server

ALTER TABLE enpl oyees ADD
CONSTRAI NT ck_sal ary CHECK (sal ary >= 500);

Table altered.

ORACLE
17-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Protecting Data Integrity
with a Trigger

CREATE OR REPLACE TRI GGER check _sal ary
BEFORE UPDATE OF sal ary ON enpl oyees
FOR EACH ROW
VWHEN (NEW sal ary < QOLD. sal ary)

BEQ N

RAI SE_APPLI CATI ON_ERROR (- 20508,
‘Do not decrease salary.');

END;
/

ORACLE
17-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Enforcing Referential Integrity
Within the Server

ALTER TABLE enpl oyees
ADD CONSTRAI NT enp_deptno_fk
FOREI GN KEY (departnent id)

REFERENCES depart nent s(departnment id)
ON DELETE CASCADE;

ORACLE
17-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Protecting Referential Integrity
with a Trigger

CREATE OR REPLACE TRI GGER cascade updat es
AFTER UPDATE COF departnent id ON departnents
FOR EACH ROW
BEG N
UPDATE enpl oyees
SET enpl oyees. depart nent i d=: NEW departnent _id

VWHERE enpl oyees. departnent i d=: OLD. depart nent i d;
UPDATE j ob_hi story
SET departnent i d=: NEWdepartnent id
VWHERE departnent id=: OLD. departnent id;
END;
/

ORACLE
17-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Replicating a Table
Within the Server

CREATE SNAPSHOT enp _copy AS
SELECT * FROM enpl oyees@y;

ORACLE
17-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Replicating a Table with a Trigger

CREATE OR REPLACE TRI GGER enp _replica
BEFORE | NSERT OR UPDATE ON enpl oyees

FOR EACH ROW
BEG N /*Only proceed if user initiates a data operati on,
NOT t hrough the cascading trigger.*/

| F | NSERTI NG THEN
| F :NEWflag IS NULL THEN
| NSERT | NTO enpl oyees @f
VALUES(new. enpl oyee_id, :newlast_nane,...

NEWflag :="A";

END | F;
ELSE /* Updating. */
|F :NEWflag = :OLD.fl ag THEN

UPDATE enpl oyees @& f
SET enane = :NEW I ast _nane, ...,

flag = : NEWTI ag
VWHERE enpl oyee id = : NEW enpl oyee_i d;

END | F;
IF :OLD.flag = ' A
ELSE : NEWflag : =

END | F;
END | F;
END;

THEN : NEWflag := 'B';
A

ORACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

Computing Derived Data Within the Server

UPDATE depart nents
SET total sal =(SELECT SUM sal ary)

FROM enpl oyees
VWHERE enpl oyees. departnent _id =
departnment s. departnent _id);

ORACLE
17-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Computing Derived Values with a Trigger

CREATE OR REPLACE PROCEDURE i ncrenent sal ary

(p_id | N depart nents. depart nent i d%'YPE,
p_salary I N departnents.total sal %YPE)

| S

BEG N
UPDATE departnents
SET total _sal = NVL (total _sal, 0)+ p_salary
VWHERE departnent id = p_id;

END i ncrenent _sal ary;

CREATE OR REPLACE TRI GGER conput e_sal ary

AFTER | NSERT OR UPDATE OF sal ary OR DELETE ON enpl oyees

FOR EACH ROW

BEG N
| F DELETI NG THEN

| ncrenment _sal ary(: OLD. departnent _id, (-1*: OLD. sal ary));

ELSI F UPDATI NG THEN

| ncrement _sal ary(: NEW departnent _id, (: NEWsal ary-: OLD. sal ary))
ELSE i ncrenent _sal ary(: NEW depart nent i d, : NEW sal ary) ; - - | NSERT
END | F;

END;

ORACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

Logging Events with a Trigger

H der _rep
BEFORE UPDATE OF quantity on_hand, reorder_ point
ON i nventories FOR EACH ROW
DECLARE
v_descrip product descriptions. product descri pti on% YPE;
V_neg_text VARCHARZ(ZOOO)
stat_send nunber(1);
BEG N
| F :NEWquantity on_hand <= : NEWreorder point THEN
SELECT product _descri ption | NTO v _descrip
FROM pr oduct _ descrl ptl ons
WHERE product id = : NEW product i d;
v_neg text ;=" ALERT: | NVENTORY LOW ORDER: ' | | CHR(10) | |
..."Yours,' ||CHR(10) ||user || "."|| CHR(10)|| CHR(10);
ELSI F
: OLD. quantity on_hand < : NEWquantity on_hand THEN NULL;
ELSE
v nsg text := 'Product #||... CHR(10);
END | F;
DBVS Pl PE. PACK . MESSAGE(v_nsg_text);
ENSDt at _send : = DBMS_PI PE. SEND I\/ESSAC—E(' | NV_PI PE') ;

ORACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

Benefits of Database Triggers

Improved data security:

Provide enhanced and complex security
checks

Provide enhanced and complex auditing

Improved data integrity:
Enforce dynamic data integrity constraints

Enforce complex referential integrity
constraints

Ensure that related operations are performed
together implicitly

ORACLE

17-26 Copyright © Oracle Corporation, 2001. All rights reserved.

Managing Triggers

The following system privileges are required to

manage triggers:
The CREATE/ ALTER/ DROP (ANY) TRI GGER

privilege enables you to create a trigger in any
schema

The ADM NI STER DATABASE TRI GGER privilege
enables you to create a trigger on DATABASE

The EXECUTE privilege (if your trigger refers to any
objects that are not in your schema)

Note: Statements in the trigger body operate under
the privilege of the trigger owner, not the trigger user.

ORACLE
17-27 Copyright © Oracle Corporation, 2001. All rights reserved.

Viewing Trigger Information

You can view the following trigger information:
USER OBJECTS data dictionary view: object
Information
USER TRI GGERS data dictionary view: the text of
the trigger

USER ERRORS data dictionary view: PL/SQL syntax
errors (compilation errors) of the trigger

ORACLE
17-28 Copyright © Oracle Corporation, 2001. All rights reserved.

17-29

Using USER_TRI GGERS*

Column Column Description

TRI GGER_NAME Name of the trigger

TRI GGER_TYPE The type is BEFORE, AFTER, | NSTEAD OF

TRI GGERI NG_EVENT The DML operation firing the trigger

TABLE NAME Name of the database table

REFERENCI NG NAMES Name used for : OLDand : NEW

VHEN CLAUSE The when_clause used

STATUS The status of the trigger

TRI GGER_BODY The action to take

* Abridged column list

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

Listing the Code of Triggers

SELECT trigger _nane, trigger type, triggering event,
t abl e nane, referencing nanes,
status, trigger_ body

FROM user _triggers
VWHERE trigger nane ' RESTRI CT_SALARY' ;

RESTRICT_SALARY P! WFE FACH iysepT o uPDATE |EMPLOYEES o SHEIEING KEW

(RO f

ORACLE

17-30 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

In this lesson, you should have learned how to:
Use advanced database triggers
List mutating and constraining rules for triggers
Describe the real-world application of triggers
Manage triggers
View trigger information

ORACLE
17-31 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 17 Overview

This practice covers creating advanced triggers to
add to the capabilities of the Oracle database.

ORACLE
17-32 Copyright © Oracle Corporation, 2001. All rights reserved.

Managifig De

Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

Track procedural dependencies

Predict the effect of changing a database object
upon stored procedures and functions

Manage procedural dependencies

ORACLE
18-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Understanding Dependencies

Dependent Objects Referenced Objects

Table Function
View Package Specification
Database Trigger Procedure

Procedure Sequence

Function Synonym
Package Body Table

Package Specification View

User-Defined Object User-Defined Object
and Collection Types and Collection Types

ORACLE
18-3 Copyright © Oracle Corporation, 2001. All rights reserved.

18-4

Procedure

XXXXXXXXXXXXXX
VVVVVVVVVVVVVV
XXXXXXXXXXXXXX
VVVVVVVVVVVVVV
XXXXXXXXXXXXXX
VVVVVVVVVVVVVV
XXXXXXXXXXXXXX
VVVVVVVVVVVVVV
XXXXXXXXXXXXXX

VVVVVVVVVVVVVV

Dependent

Dependencies

View or
procedure Table
Direct Direct
dependency dependency
>
Referenced

Dependent

Indirect

Reférenced

dependency

ORACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

Local Dependencies

Procedure Procedure View

XXXXXXXXXXXXXX VVVVVVVVVVVVVV -i
VVVVVVVVVVVVVV XXXXXXX XXX XXX X

XXXXXXXXXXXXXX VVVVVVVVVVVVVV))
VVVVVVVVVVVVVV XXXXXXX XXX XXX X

XXXXXXXXXXXXXX VVVVVVVVVVVVVV

VVVVVVVVVVVVVV XXXXXXX XXX XXX X __

VVVVVVVVVVVVVV VVVVVVVVVVVVVV

Local references

>

Direct local
dependency

ORACLE
18-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Procedure

XXXXXXXXXXXXXX
VVVVVVVVVVVVVV
XXXXXXXXXXXXXX
VVVVVVVVVVVVVV
XXXXXXXXXXXXXX
VVVVVVVVVVVVVV
VVVVVVVVVVVVVV

| NVALI D

Procedure

VVVVVVVVVVVVVV
XXX XXX XXX XXXXX
VVVVVVVVVVVVVV
XXX XXX XXX XXXXX
VVVVVVVVVVVVVV
XXX XXX XXX XXXXX

VVVVVVVVVVVVVV

| NVALI D

Local references

>

Direct local
dependency

Definition
change

Local Dependencies

View

| NVALI D

Table

The Oracle server implicitly recompiles any | NVALI D
object when the object is next called.

18-6

Copyright © Oracle Corporation, 2001. All rights reserved.

ORACLE

A Scenario of Local Dependencies

ADD ENP

EMP_VWview
procedure

EMPLOYEE_ID [LAST_NAME [FIRST _NAME |, EMAIL DEPARTMEN
XXXXXXXXXXXXXXXXXXXXX

VVVVVVVVVVVVVVVVVVVVY 100 [King Steven SkIMG
VVVVVVVVVVVVVVVVY - - — _
VVVVVVVVVVVVVVVVVVVVY 101 |Kochhar MEOCHHAR
VVVVVVVVVVVVVVVVVVVVY — —

1117 - - .) i
VVVVVVXXXXXXXXXXXXXXX 102 |De Haan Lex LOEHAAN

XXXXXXXXXXXXXXX XX XXX X 4Mc M e - L] Y
VYV VYUY 105 |Austin David DALISTIM

QUERY_EMP EMPLOYEES table
procedure

XXXXXXXXXXXXXXXXXXXXX
VVVVVVVVVVVVVVVVVVVVV
VVVVVVVVVVVVVVVVV

VVVVVVVVVVVVVVVVVVVVV

VVVVVVVVVVVVVVVVVVVVV
VVVVVVXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXX
VVVVVVVVVVVVVVVVVVVVV

ORACLE
18-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Displaying Direct Dependencies by Using
USER DEPENDENCI ES

SELECT nane, type, referenced name, referenced type
FROM user _dependenci es
VWHERE referenced nanme IN (' EMPLOYEES' ,' EMP_ VW);

ORACLE
18-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Displaying Direct and Indirect
Dependencies

1. Runthe scriptutl dtree. sgl that creates the

objects that enable you to display the direct and
Indirect dependencies.

2. Execute the DEPTREE FI LL procedure.

EXECUTE deptree_fill (' TABLE ,' SCOTT' ,' EMPLOYEES')

FLIZQL procedure successfully completed.

ORACLE
18-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Displaying Dependencies

DEPTREE View

SELECT nested |level, type, nane
FROM deptree
ORDER BY seq#;

ORACLE
18-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Another Scenario of Local Dependencies

XXXXXXXXXXXXXXXXXXXXX
VVVVVVVVVVVVVVVVVVVVV

REDUCE SAL s
VVVVVVVVVVVVVVVVVVVVV
VVVVVVVVVVVVVVVVVVVVV

p r O C ed u r e VVVVVVXXXXXXXXXXXXXXX

XXXXXXXXXXXKXXXXXXXXXX

VVVVVVVVVVVVVVVVVVVVV

RAI SE SAL
p rO C ed u re XXXXXXXXXXXXXXXXXXXXX

VVVVVVVVVVVVVVVVVVVVV
VVVVVVVVVVVVVVVVV
EI\/PL OYEES b I VVVVVVVVVVVVVVVVVVVVV
t a e VVVVVVVVVVVVVVVVVVVVV
VVVVVVXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXX
VVVVVVVVVVVVVVVVVVVVV

ORACLE
18-11 Copyright © Oracle Corporation, 2001. All rights reserved.

A Scenario of Local Naming
Dependencies

QUERY EMP
procedure

EMPLOYEES public synonym

XXXXXXXXXXXXXXXXXXXXX
VVVVVVVVVVVVVVVVVVVVV
VVVVVVVVVVVVVVVVV

VVVVVVVVVVVVVVVVVVVVV

VVVVVVVVVVVVVVVVVVVVV
VVVVVVXXXXXXXXXXXXXXX
XXXXXXXXX XXX XXX XXXXXX
VVVVVVVVVVVVVVVVVVVVV

EMPLOYEES
table

le Haan

ORACLE

18-12 Copyright © Oracle Corporation, 2001. All rights reserved.

18-13

Understanding Remote Dependencies

Procedure

XXXXXXXXXXXXXX
VVVVVVVVVVVVVV
XXXXXXXXXXXXXX
VVVVVVVVVVVVVV
XXXXXXXXXXXXXX
VVVVVVVVVVVVVV
XXXXXXXXXXXXXX

VVVVVVVVVVVVVV
XXXXXXXXXXXXXX
VVVVVVVVVVVVVV

Local and remote references

N>
Network

3

Direct local
dependency

Copyright © Oracle Corporation, 2001. All rights reserved.

Procedure

VVVVVVVVVVVVVV
XXXXXXXXXXXXXX
VVVVVVVVVVVVVV

XXXXXXXXXXXXXX
VVVVVVVVVVVVVV
XXXXXXXXXXXXXX
VVVVVVVVVVVVVV

N>

Direct remote
dependency

Table

ORACLE

18-14

Understanding Remote Dependencies

Procedure

XXXXXXXXXXXXXX
VVVVVVVVVVVVVV
XXXXXXXXXXXXXX
VVVVVVVVVVVVVV
XXXXXXXXXXXXXX
VVVVVVVVVVVVVV
XXXXXXXXXXXXXX

VVVVVVVVVVVVVV
XXXXXXXXXXXXXX
VVVVVVVVVVVVVV

VALI| D

N>
Network

Procedure

VVVVVVVVVVVVVV
XXXXXXXXXXXXXX
VVVVVVVVVVVVVV

XXXXXXXXXXXXXX
VVVVVVVVVVVVVV
XXXXXXXXXXXXXX
VVVVVVVVVVVVVV

| NVALI D

View

—_— —).

| NVALI D

Local and remote references

3

Direct local
dependency

N>

Direct remote
dependency

I
Definition
change

ORACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

Concepts of Remote Dependencies

Remote dependencies are governed by the mode
chosen by the user:

TI MESTAMP checking
SI GNATURE checking

ORACLE
18-15 Copyright © Oracle Corporation, 2001. All rights reserved.

REMOTE DEPENDENCI ES MODE Parameter

Setting REMOTE DEPENDENCI ES MODE:
As aninit.ora parameter
REMOTE DEPENDENCI ES MODE = val ue

At the system level

ALTER SYSTEM SET
REMOTE_DEPENDENCI ES_MODE = val ue

At the session level

ALTER SESSI ON SET
REMOTE _DEPENDENCI ES_MODE = val ue

ORACLE
18-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Remote Dependencies and
Time Stamp Mode

Procedure Procedure View Table

XXX XXX XXX XXXXX
VVVVVVVVVVVVVV
XXX XXX XXX XXXXX

VVVVVVVVVVVVVV /\/) VVVVVVVVVVVVVV
XXXXXXXXXXXXXX XXXXXXXXXXXXXX
VVVVVVVVVVVVVV VVVVVVVVVVVVVV
XXXXXXXXXXXXXX NetWO rk XXXXXXXXXXXXXX

VVVVVVVVVVVVVV
XXXXXXXXXXXXXX
VVVVVVVVVVVVVV

VVVVVVVVVVVVVV
XXX XXX XXX XXXXX
VVVVVVVVVVVVVV

-N)
Network

ORACLE
18-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Procedure

18-18

XXX XXX XXX XXXXX
VVVVVVVVVVVVVV
XXX XXX XXX XXXXX
VVVVVVVVVVVVVV
XXX XXX XXX XXXXX

VVVVVVVVVVVVVV
XXX XXX XXX XXXXX
VVVVVVVVVVVVVV
XXX XXX XXX XXXXX
VVVVVVVVVVVVVV

VALI| D

JV)
Network

Remote Dependencies and

Time Stamp Mode

Procedure

/\/ S VVVVVVVVVVVVVY

Network

XXXXXXXXXXXXXX
VVVVVVVVVVVVVV
XXXXXXXXXXXXXX
VVVVVVVVVVVVVV

XXXXXXXXXXXXXX
VVVVVVVVVVVVVV

| NVALI D

View Table

| NVALI D

]
Definition
change

ORACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

Remote Procedure B Compiles
at 8:00 a.m.

Remote procedure B

Valid

18-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Local Procedure A Compiles
at 9:00 a.m.

Local procedure A Remote procedure B

Record
Time stamp
o1 B

Valid Valid

18-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Execute Procedure A

Local procedure A Remote procedure B

Execute B

Valid Valid

18-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Remote Procedure B Recompiled
at 11:00 a.m.

Remote procedure B

Valid

18-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Execute Procedure A

Local procedure A Remote procedure B

J—

ERROR

Vaud Invalid Valid

18-23 Copyright © Oracle Corporation, 2001. All rights reserved.

18-24

Signature Mode

The signature of a procedure is:
The name of the procedure
The datatypes of the parameters
The modes of the parameters

The signature of the remote procedure is saved in
the local procedure.

When executing a dependent procedure, the

signature of the referenced remote procedure is
compared.

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

Recompiling a PL/SQL
Program Unit

Recompilation:

Is handled automatically through implicit run-time
recompilation

Is handled through explicit recompilation with the
ALTER statement

ALTER PROCEDURE [SCHEMA.] procedur e_nane COVPI LE;

ALTER FUNCTI ON [SCHEMA.] functi on_nanme COWPI LE;

ALTER PACKAGE [SCHEMNA.] package nane COWPI LE [PACKAGE] ;

ALTER PACKACGE [SCHEMA. | package _nane COWPI LE BODY;

ALTER TRI GGER tri gger nane [COVPI LE[] DEBUQGF] ;

ORACLE
18-25 Copyright © Oracle Corporation, 2001. All rights reserved.

Unsuccessful Recompilation

Recompiling dependent procedures and functions is
unsuccessful when:

The referenced object is dropped or renamed
The data type of the referenced column is changed
The referenced column is dropped

A referenced view is replaced by a view with
different columns

The parameter list of a referenced procedure is
modified

ORACLE
18-26 Copyright © Oracle Corporation, 2001. All rights reserved.

Successful Recompilation

Recompiling dependent procedures and functions is
successful if:

The referenced table has new columns

The data type of referenced columns has not
changed

A private table is dropped, but a public table,
having the same name and structure, exists

The PL/SQL body of areferenced procedure has
been modified and recompiled successfully

ORACLE
18-27 Copyright © Oracle Corporation, 2001. All rights reserved.

Recompilation of Procedures

Minimize dependency failures by:
Declaring records by using the YROMYPE attribute

Declaring variables with the %I'YPE attribute
Querying with the SELECT * notation
Including a column list with | NSERT statements

ORACLE
18-28 Copyright © Oracle Corporation, 2001. All rights reserved.

Packages and Dependencies

[
- -]

! E
-]

18-29 Copyright © Oracle Corporation, 2001. All rights reserved.

Packages and Dependencies

]
Definition ﬂ

changed

i

e

18-30 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

In this lesson, you should have learned how to:
Keep track of dependent procedures

Recompile procedures manually as soon as
possible after the definition of a database object
changes

ORACLE
18-31 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 18 Overview

This practice covers the following topics:

Using DEPTREE_FI LL and | DEPTREE to view
dependencies

Recompiling procedures, functions, and packages

ORACLE
18-32 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating
Pr

gram Units by Using
edure Builder

ORACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

C-2

Objectives

After completing this appendix, you should be able to
do the following:

Describe the features of Oracle Procedure Builder
Manage program units using the Object Navigator

Create and compile program units using the
Program Unit Editor

Invoke program units using the PL/SQL Interpreter
Debug subprograms using the debugger

Control execution of an interrupted PL/SQL
program unit

Test possible solutions at run time

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

PL/SQL Program Constructs

Tools Constructs

Anonymous blocks

Database Server
constructs

Application proceduresor
functions

Anonymous blocks

Application packages

Stored procedures or
functions

Application triggers

Stored packages

Object types

Databasetriggers

Object types

Copyright © Oracle Corporation, 2001. All rights reserved.

C-4

Development Environments

ISQL*Plus uses the PL/SQL engine in the Oracle
Server

Oracle Procedure Builder uses the PL/SQL engine
In the client tool or in the Oracle Server. It
Includes:

A GUI development environment for PL/SQL code
Built-in editors
The ability to compile, test, and debug code

Application partitioning that allows drag-and-drop
of program units between client and server

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

Developing Procedures and Functions
Using ISQL*Plus

Script Locatio r'I::E]j"uijE!ﬂ'l OOl C.5C Browse...] Load Script
Enter statements:

[REM Run the 01 _addtabs. sgl script before running this script
REM to ensure that the log_table is created.

CHEATE OR REFPLACE PROCEDLURE log_execution
IS
BEGIM
IMSERT INTO log_table {user_id, log_date)
WalLLES (user, sysdate);

EMD log __E! xecution;

Execute i utput; Worle Screen = Clear Screen oawe Script

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

Developing Procedures and Functions Using
Oracle Procedure Builder

-2 Oracle Procedure Builder
Fie Edit Window Hel

M I=1E5| | & Program Unit - LOG_EXECUTION
LOG_E>=] Find: | New. | Delete

7 Program Units Name: [LOG_EXECUTION (Procedure Body)
el LOG_E==CUTION [Procedure
PL/SAL Libranies PROCEDURE log execution I3
Attached Libraries EEGIN

+-Built-in Packages INSERT INTO log teble {user id,log date)
Debug Action: VALUES (user, sysdate);

Gtack i
+-Database Objects END logy execution:

e

Mo: bModified Successfully Compiled

ORACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

C-7

Components of
Procedure Builder

Component Function

Object Navigator Manages PL/SQL constructs;
performs debug actions

PL/SQL Interpreter Debugs PL/SQL code; evaluates
PL/SQL code in real time

Program Unit Editor Creates and edits PL/SQL source
code

Stored Program Creates and edits server-side
Unit Editor PL/SQL source code

Database Trigger Editor Creates and edits database triggers

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

Developing Program Units
and Stored Programs Units

Procedure
Builder

Server-side
code

Client-side
code

«

Program units Stored program units
in a PL/SQL library iIn the Oracle server
ORACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

Procedure Builder Components:
The Object Navigator

| % Object M avigator

+Program Units

LEAVE EMP [Procedurs Body)
LOG_EXECUTIOM [Frocedurs Body)
ypecification
e LOG_ER=ECUTION:

f e SERLOG_TAELE [T ahbile)
=--Reflerenced By
! Lo LESYE_EMP [Procedure Baody)
- PLAAOL Librane=

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

Procedure Builder Components:
The Object Navigator

-2 Oracle Procedure Builder
EIE' Edil ﬂir‘u:lljl.-'-.l Hels

MI=1EEI & Program Unit - LOG_EXECUTION M=l

el (2]

PL/SQL Libraries
Attached Libraries
+-Built-in Packages
Debuq Actions
Stack
+-Database Dbjects

Mo Modified Su ully Compiled

ORACLE
C-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Procedure Builder Components:
Objects of the Navigator

Program Units
Specification
References
Referenced By

Libraries
Attached Libraries
Built-in Packages
Debug Actions
Stack

Database Objects

ORACLE
C-11 Copyright © Oracle Corporation, 2001. All rights reserved.

C-12

Developing Stored Procedures

L

Compile and Save

Execute

Copyright © Oracle Corporation, 2001. All rights reserved.

Procedure Builder Components:
The Program Unit Editor

- Oracle Procedure Builder - a user@oracleli [_ O]
1 Eulil - Progidin

B Program Umit BAISE_SALARY

Frogram Umnits FIA SALARY [Frocedure Eody] i e

Ral5F_SAl ARY [Proredire g

Specihication
Neferences
Relerenced By

al naber)

PLASOL Libraries

Attached Libranes TFLATE
Buik-in Packages SET
Nehug Achnns WHERE
Ctack ; i
Databasc Objcct:

ORACLE
C-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Procedure Builder Components:
The Stored Program Unit Editor

Z Oracle Procedure Builder - a_user@oracleBi =]
Filz= Edit Program i

1 Program Units Dwner; i USER i M ame:; TAH [Function]) ".

L/SAL Libraries
~Attached Libraries
-Built-in Packages alary NUMEER)
~Debug Actions TEM NUMEEER

tack I3

)atabaze Objects EESGIN

. RETURN (v salary * 0.03);
ored Program Units END:

B E T2 [Function)]

PL/SAL Libranes

Mot Maodifie

ORACLE
C-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a Client-Side
Program Unit

-Z Nracde Pracedire Ruilder - a_nzei@nracief [_ M=
Fle Edl Havigals Fiucian

B Program Unit - NAISC_SALANY
Hrogram Un ™ I-r-:I

IR Program Lnits
PLASOL Librarice
Attoched Librancs =
. Duilt-in Mackoages v oenpo I]THIE-EF
Debug Actions + new ==l NUMDER)
o 3lachk e~
+- Database Objects Co
_ BEGIH
TPDLTE eng
Mew Hrogram Urat _'J;I_'.J' -E m]' .
— ST E] = W _neWT_=3
o _ VHERE enrro = v_empnoa:
E J aier_salay fomz=:
- _ END;
= Procedure
i Funelion

i Pachape ﬁ.l-' E
" Packapge Ho

slodified Compiled wita E rorz

ORACLE
C-15 Copyright © Oracle Corporation, 2001. All rights reserved.

C-16

Creating a Server-Side
Program Unit

-2 Dracle Procedure Builder - a uzer@oraclefi Hi=l B3

Eie Edit - Havigalo - Fuwocraim - wadirdos - H=lp

% Objcct Havigator Hi=l

i Slured P i Find. i

I Frogram Umts
PL/SOL Libraries
Attached Libraries
Buik-in Packages T
D:'-::Iukg Aotions - = KUMEERI
~F L=
Datahase Objects
- &b USER i}
; ":irnlprl Frogram |Initz BECTIN

'PLJ EETURN (w =
Mew Hrogram U ENT »

LTHEEE.

.

Mot fodifed

ORACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

Transferring Program Units Between
Client and Server

- Oracle Procedure Builder a_uscr@oracledi E =] E
File - Edit - Havigator - Program - indow Help

ﬁ Object Havigator

HAISE_EALAH"I" '. Find: i

RlHAlol _balaly Frocedure Body)
PL/SGL Libraries) '
- Attached Libraries LW _RInp NUHEEE,
- Built-in Packages w_new 551 NUOMEEER)
- Debug Actions IS
~Stack BEGIN
- Database Objects TFDLTE

St

Sl - wone I.I.I_::ii:l.l

SER SET
P empno = V_empno;
-l Tav [Funztion) -
PL/SQL Libraries

2, TRAVEL

_grj:j | falky Crrepiled

ORACLE
C-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Procedure Builder Components:
The PL/SQL Interpreter

B PL/SOL Interpreter =] E3

ocool E raioc aalcry
NITHEETR,
al NUHEELL)

OCoos

ALARY [Frocedure Eody)
Pl /501 | ihranies
Attached Libranes
-Built-in Package:
Debug Action:
Stack
Darahase Nhieckz

e zalary (7369, 1000} ;
SELECT * FR
+> THERE enpno = -
IMAMO EMAME JCE HGR H-REDATE

_P=-DEC-BC 1004, Ja

ORACLE
C-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating Client-Side Program Units

Mew Program Unit

Hame:

+ Procedure
{~ Function
{" Package Spec

Package Body

BEEGIN
TEEZT IC.PUT LIMNE
EML ;

DK Eanmlﬂe'p

Mot kodified

ORACLE
C-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating Server-Side Program Units

- Oracle Procedure Builder - a_user@oracledi
File - Edit - Program - window - Help

EInp
Attached Libraries _ IN emp . empho% TYPE)
Built-in Packages -
Debug Actions EGIN
Stack DELETE FEOM emp
=~ Databaze Objects WHEEE empno = < id:

C I eat e A-USER ution:
: Stored Program Units T & emp:

Delete R e L 2E_EMP (Frocedure) -

ITIOM [Frocedure

y [Function]
‘PL/SQL Libranies
Tables
Yiews

{odified

ORACLE
C-20 Copyright © Oracle Corporation, 2001. All rights reserved.

The DESCRI BE Command In
Procedure Builder

-% Oracle Procedure Builder Hi=] E3
i i - Debug - Window - Help

B PL/SOL Interpreter =]

—Program Units
B FORMAT PHOME [Procedurs Eody) DURE format phone

PL/SAL Libraries (v phone no IN OUT WARCHARZ)
—Attached Libraries o o
—Built-in Packages

Debug Actions

Stack

Databaze Objecks

7 _phone no IN COUT VARCHARZ
piled: YES

: ATANDARD

ORACLE
C-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Listing Code of Stored Program Units

% Object Mavigator [_ 3] =]

~Program Unitg

‘PL/S0OL Libranies

~Attached Libranes

-Built-in Packages e N |

~Debuqg Actions
-5Stack
StO red -Database Objects —
A USER (v _name IN dept.dname:TYPE DEFAT
pro cedure : : v _loc IN dept.locsTYPE DEFAULT
— _ IS
ICOoNn : LE _PACK [Package S EEGIN
g INSERT INTO dept
] Lo AUERY EMP [Procedurs’ VALUES (dept deptno.MNEXTVAL,v n
EX pan d - PL/SOL Libraries END add dept;
i - Tables
and
Collapse
buttons

Mot Modified S zfully Compiled

ORACLE
C-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Navigating Compilation Errors
In Procedure Builder

B> Program Unit - ADD_EMP =] B

Compile BRevert Hew. . Delete

Name: {ADD_EMP~ (Procedure Body) |

PROCEDUORE add emp I3

BEGIN
INZERT IMNTO emp [(empho, ename, deptino)
VALUES (7529, 'EEHCOE', 30)

END;

 odified Compiled with Errors

ORACLE
C-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Procedure Builder Built-in Package:
TEXT 1O

The TEXT | Opackage:

Contains a procedure PUT_LINE, which writes
information to the PL/SQL Interpreter window

Is used for client-side program units
The TEXT | O PUT_LI NE accepts one parameter

PL/ SQL> TEXT | O PUT_LI NE(1);
1

ORACLE
C-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Executing Functions in
Procedure Builder: Example

Calling environment TAX function

Display the tax based on a specified value.

PL/ SQL> . CREATE NUMBER x PRECI SI ON 4
PL/ SQL> : x := tax(1000);

PL/ SQL> TEXT_I O. PUT_LI NE (TO_CHAR(: X)) ;
80

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

Creating Statement Triggers

& Database Trigger

Table Owner: JTahIE: :..j Mame:

[A_usER [EmP =] [SECURE_EMP

Triggering —————————————— - Glatement ——————————— . If Columns —— —————————————

| = Before || ™ UPDATE

" After ' | ¥ INSERT

| I DELETE

(— For Each
{ { Statement ¢ Bow

BEGIN
IF TO CHAR(SYSDATE, 'D¥') IN ('SAT','S3UN')
OR TO CHAR(3IYSDATE, 'HH2Z4') NOT BETWEEN '0O3' AND '15'
THEN
RATSE APPLICATION ERRCER (-2Z0500,
'"You may only insert into the EMP table during business hours.'):;
END IF:

Hew Revert Cloze |

Help

Copyright © Oracle Corporation, 2001. All rights reserved.

C-27

Creating Row Triggers

3. Database Trigger =]

Table 0 wner: .Tahle: T_ Name:
A_LISEFI ; EMF - DEHWE_EDHHISSIUH_FET i

~ Triggering - Ctatement

| || ¥ UPDATE
¥ INSERT

| I ™ DELETE

For Each -
= Statement ' Bow

| Referencing OLD As: i oLD - NEW Asz:

BEGIN
IF MNOT (:NEW.JOE IN ('MANAGER' , 'PRESIDENT'))
AND :NEW.SAL > 5000
THEM
LPPLICATICN ERRO
[&, 'EMFPLOTEE CANNOT EALERN THIS AMNOUNT'):
END IF;
END;

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

Removing Server-Side Program Units

Using Procedure Builder:

Connect to the database.

Expand the Database Objects node.
Expand the schema of the owner of the program unit.
Expand the Stored Program Units node.
Click the program unit that you want to drop.
Click Delete in the Object Navigator.

N o Ok DR

Click Yes to confirm.

ORACLE
C-28 Copyright © Oracle Corporation, 2001. All rights reserved.

Removing Client-Side
Program Units

Using Procedure Builder:

1.
. Click the program unit that you want to remove.

2
3.
4. Click Yes to confirm.

C-29

Expand the Program Units node.

Click Delete in the Object Navigator.

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

Debugging Subprograms by Using

-2 Oracle Procedure Builder

FEile Edit Program Debug indow Help

-
1200
[

Yiew Mavigator

Pl=

[CBTES1x] Find |

B (2]

Procedure Builder

B PL/SOL Interpreter =]

CEEZ P X[2] EPE [E[E]E]E) Find A2 ey

1
Fey

%
-
¥

1

Kl

Program Units
il CETEST [Procedurs Body)
PL/SAL Libraries
Attached Libraries
Built-in Packages
Debug Actions
Stack
Database Objects
—o5, CBALMWERS
-I-5tored Program Units
6 A0D_EMP [Procedure]
62 CETEST [Procedure]
i CHECK_PK_CUST [Pre
65 GET_FRODUCT _[MAL
&) M~'_FUMC [Function]
6 MY_PROC [Procedure
+-PLfSAL Libraries
+-Tables
+-Yiews
+H- 8 55
+-.8, SYSTEM

7]

E,_ Clienst Program Unit: CBTEST [Procedure Body]
00004 EBEGIN
ooo0s for I in 1..a loop
0000 & =% c+1;
E(0O1) text io.put line('times through the loop !
aooos end loop:

[lto_char(i}):

Program Units

bl CETEST [Procedurs Body)
PL/SOL Libranes

Attached Libraries

Built-in Packages

Debug Actions

Stack

Database Objects

1]

PL/3Q0L> .break .

Breakpoint #1 installed at line 7 of CETEST
FL/30L>

u

Copyright © Oracle Corporation, 2001. All rights reserved.

Listing Code in the Source Pane

PUH aL Intt:rp reter

oooo1

00004 EEI IN
E(01) TEXT IO.FUT LINE (w_]

= Program Umils

Sl MY WESSAGE [Procedure Body)

Libraries
Attached Libranezs
+ Dult-in Mackages
&% NDehug Achinnsz
Stack

f Database l]l:n'ec:ts

‘0L Jhreak .
point #1 installec at lin= 5 of OV MEGSAGE
FL/SJL>

C-31 Copyright © Oracle Corporation, 2001. All rights reserved.

Setting a Breakpoint

PLISQL Interpreter EE'

EDUURE count lcops
ount 1M MNUMEEREE])

LOOP
0.PJT_LINE [Times through loop: '||TO_CHAR(i)]:

natalled st line & of COUNT L0

ORACLE
C-32 Copyright © Oracle Corporation, 2001. All rights reserved.

Debug Commands

Copyright © Oracle Corporation, 2001. All rights reserved.

C-34

Stepping through Code

unt IMN NUMEILRY)

BEZIN
FOR i in 1..v rooint 1005

END Lt
ENMD;

count _loors (4):

Enterin] roiat #2 line & of COUNT L

sy 1) PL,

Copyright © Oracle Corporation, 2001. All rights reserved.

FL5UL Interpreter

TEXT IIZII.PLTT:LI}-IE ('Times through loop: '| To _CIAR(iI):

4]
]

i
o
i
i
L]

ORACLE

Changing a Value

E Oracle Procedure iEluiIder - En
|

Edit Tools MNavigator Window Help

— Mrogram Units
+ = O LOOFS |
[
k Yylalyll : k] OR 1 in l..wv_count LOOP
Librarics - T IQ.PJIT LINE (' Times=s through loop:
Attached Libraries -
4= Built-in Fackage:
% Debug Actions
Stack
W [0] Anorymous Blozk FU_0z3 Line |

®y Couk
% Databas

ORACLE
C-35 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

In this appendix, you should have learned how to:
Use Procedure Builder:
Application partitioning
Built-in editors
GUI execution environment
Describe the components of Procedure Builder
Object Navigator
Program Unit Editor
PL/SQL Interpreter
Debugger

ORACLE
C-36 Copyright © Oracle Corporation, 2001. All rights reserved.

Copyright © Oracle Corporation, 2001. All rights reserved.

D-2

Cursor Variables

Cursor variables are like C or Pascal pointers,
which hold the memory location (address) of an
item instead of the item itself

In PL/SQL, a pointer is declared as REF X, where
REF is short for REFERENCE and X stands for a
class of objects

A cursor variable has the data type REF CURSOR
A cursor is static, but a cursor variable is dynamic
Cursor variables give you more flexibility

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

D-3

Why Use Cursor Variables?

You can use cursor variables to pass query result
sets between PL/SQL stored subprograms and
various clients.

PL/SQL can share a pointer to the query work area
In which the result set is stored.

You can pass the value of a cursor variable freely
from one scope to another.

You can reduce network traffic by having a
PL/SQL block open (or close) several host cursor
variables in a single round trip.

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

D-4

Defining REF CURSOR Types

Define a REF CURSORtype.

Defi ne a REF CURSOR type
TYPE ref _type nane | S REF CURSCR [RETURN return_type];

Declare a cursor variable of that type.

ref _cv ref _type nane;

Example:

DECLARE
TYPE Dept Cur Typ | S REF CURSOR RETURN

depart ment s¥ROM YPE;
dept _cv Dept Cur Typ;

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

Using the OPEN- FOR, FETCH, and CLOSE
Statements

The OPEN- FOR statement associates a cursor
variable with a multirow query, executes the
guery, identifies the result set, and positions the
cursor to point to the first row of the result set.

The FETCHstatement returns a row from the result

set of a multirow query, assigns the values of
select-list items to corresponding variables or
fields in the | NTOclause, increments the count
kept by “ROANCOUNT, and advances the cursor to

the next row.
The CLOSE statement disables a cursor variable.

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

An Example of Fetching

DECLARE
TYPE EnmpCur Typ | S REF CURSOR,
enp_cv EnpCur Typ;
enp_rec enpl oyees¥ROMYPE;
sgl _stnt VARCHAR2(200);
ny _j ob VARCHAR2(10) := 'ST CLERK;
BEG N
sgl _stnt :="'SELECT * FROM enpl oyees
WHERE job id = :j";
OPEN enp_cv FOR sql _stnt USI NG ny_j ob;
LOOP
FETCH enp_cv I NTO enp_rec;
EXIT WHEN enp_cv¥%NOTFOUND,;
-- process record
END LOOP;
CLOSE enp_cv;
END;
/

Copyright © Oracle Corporation, 2001. All rights reserved.

ORACLE

	cover
	curriculum map
	introduction
	lesson 1
	lesson 2
	lesson 3
	lesson 4
	lesson 5
	lesson 6
	lesson 7
	lesson 8
	lesson 9
	lesson 10
	lesson 11
	lesson 12
	lesson 13
	lesson 14
	lesson 15
	lesson 16
	lesson 17
	lesson 18
	appendix C
	appendix D

