
Oracle9i: Program with PL/SQL

Electronic Presentation

40054GC11
Production 1.1
October 2001
D34010

Copyright © Oracle Corporation, 1999, 2000, 2001. All rights reserved.

This documentation contains proprietary information of Oracle Corporation. It is provided under a
license agreement containing restrictions on use and disclosure and is also protected by copyright
law. Reverse engineering of the software is prohibited. If this documentation is delivered to a U.S.
Government Agency of the Department of Defense, then it is delivered with Restricted Rights and the
following legend is applicable:

Restricted Rights Legend

Use, duplication or disclosure by the Government is subject to restrictions for commercial computer
software and shall be deemed to be Restricted Rights software under Federal law, as set forth in
subparagraph (c)(1)(ii) of DFARS 252.227-7013, Rights in Technical Data and Computer Software
(October 1988).

This material or any portion of it may not be copied in any formor by any means without the express
prior written permission of the Education Products group of Orac le Corporation. Any other copying is
a violation of copyright law and may result in civil and/or criminal penalties.

If this documentation is delivered to a U.S. Government Agency not within the Department of
Defense, then it is delivered with “Restricted Rights,” as defined in FAR 52.227-14, Rights in Data-
General, including Alternate III (June 1987).

The information in this document is subject to change without notice. If you find any problems in the
documentation, please report them in writing to Worldwide Education Services, Oracle Corporation,
500Oracle Parkway, Box SB-6, Redwood Shores, CA 94065. Oracle Corporation does not warrant
that this document is error-free.

Oracle and all references to Oracle Products are trademarks or registered trademarks of Oracle
Corporation.

All other products or company names are used for identification purposes only, and may be
trademarks of their respective owners.

Authors

Nagavalli Pataballa
Priya Nathan

Technical Contributors
and Reviewers

Anna Atkinson
Bryan Roberts
Caroline Pereda
Cesljas Zarco
Coley William
Daniel Gabel
Dr. Christoph Burandt
Hakan Lindfors
Helen Robertson
John Hoff
Lachlan Williams
Laszlo Czinkoczki
Laura Pezzini
Linda Boldt
Marco Verbeek
Natarajan Senthil
Priya Vennapusa
Roger Abuzalaf
Ruediger Steffan
Sarah Jones
Stefan Lindblad
Susan Dee

Publisher

Sheryl Domingue

Copyright © Oracle Corporation, 2001. All rights reserved.

Curriculum Map

Copyright © Oracle Corporation, 2001. All rights reserved.

Languages Curriculum for Oracle9i

Introduction to Oracle9i
for

Experienced SQL Users

inClass

Oracle9i: Advanced PL/SQL
inClass

Oracle9i: Advanced PL/SQL
inClass

Oracle9i: SQL for
End Users

inClass

Oracle9i: SQL for
End Users

inClass

Oracle9i: Program with PL/SQL

inClass

Oracle9i: Develop PL/SQL
Program Units

Oracle9i: Develop PL/SQL
Program Units

Oracle9i: PL/SQL
Fundamentals

or

Introduction
to Oracle9i:
SQL Basics

Introduction to
Oracle9i: SQL

inClass

Oracle9i:
Advanced

SQL

I
Copyright © Oracle Corporation, 2001. All rights reserved.

Overview of PL/SQL

Copyright © Oracle Corporation, 2001. All rights reserved.I-2

Course ObjectivesCourse Objectives

After completing this course, you should be able to
do the following:

• Describe the purpose of PL/SQL

• Describe the use of PL/SQL for the developer as
well as the DBA

• Explain the benefits of PL/SQL

• Create, execute, and maintain procedures,
functions, packages, and database triggers

• Manage PL/SQL subprograms and triggers

• Describe Oracle supplied packages

• Manipulate large objects (LOBs)

After completing this course, you should be able to
do the following:

• Describe the purpose of PL/SQL

• Describe the use of PL/SQL for the developer as
well as the DBA

• Explain the benefits of PL/SQL

• Create, execute, and maintain procedures,
functions, packages, and database triggers

• Manage PL/SQL subprograms and triggers

• Describe Oracle supplied packages

• Manipulate large objects (LOBs)

Copyright © Oracle Corporation, 2001. All rights reserved.I-3

About PL/SQLAbout PL/SQL

• PL/SQL is the procedural extension to SQL with
design features of programming languages.

• Data manipulation and query statements of SQL
are included within procedural units of code.

• PL/SQL is the procedural extension to SQL with
design features of programming languages.

• Data manipulation and query statements of SQL
are included within procedural units of code.

Copyright © Oracle Corporation, 2001. All rights reserved.I-4

PL/SQL EnvironmentPL/SQL Environment

PL/SQL
block

PL/SQL engine

Oracle server

Procedural
statement
executor

PL/SQL

SQL

SQL statement executor

PL/SQL
block

Copyright © Oracle Corporation, 2001. All rights reserved.I-5

Benefits of PL/SQLBenefits of PL/SQL

IntegrationIntegration

Application

Oracle serverShared
library

Copyright © Oracle Corporation, 2001. All rights reserved.I-6

Benefits of PL/SQLBenefits of PL/SQL

Improved performanceImproved performance

Application Other DBMSs

Application
Oracle with

PL/SQL

SQL

SQL
SQL

SQL

SQL
IF...THEN

SQL
ELSE

SQL
END IF;
SQL

Copyright © Oracle Corporation, 2001. All rights reserved.I-7

Benefits of PL/SQLBenefits of PL/SQL

Modularize program developmentModularize program development

DECLARE

BEGIN

END;

EXCEPTION

…
…
…

Copyright © Oracle Corporation, 2001. All rights reserved.I-8

Benefits of PL/SQLBenefits of PL/SQL

• PL/SQL is portable.

• You can declare variables.

• PL/SQL is portable.

• You can declare variables.

Copyright © Oracle Corporation, 2001. All rights reserved.I-9

Benefits of PL/SQLBenefits of PL/SQL

• You can program with procedural language
control structures.

• PL/SQL can handle errors.

• You can program with procedural language
control structures.

• PL/SQL can handle errors.

Copyright © Oracle Corporation, 2001. All rights reserved.I-10

Benefits of Subprograms

• Easy maintenance

• Improved data security and integrity

• Improved performance

• Improved code clarity

Copyright © Oracle Corporation, 2001. All rights reserved.I-11

Invoking Stored Procedures
and Functions

xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv

LOG_EXECUTION
procedure

Scott

xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv

Scott

Oracle
Forms

Developer

Oracle
Discoverer

Oracle
Portal

1

2

3

4

Copyright © Oracle Corporation, 2001. All rights reserved.I-12

SummarySummary

• PL/SQL is an extension to SQL.

• Blocks of PL/SQL code are passed to and
processed by a PL/SQL engine.

• Benefits of PL/SQL:

– Integration

– Improved performance

– Portability

– Modularity of program development

• Subprograms are named PL/SQL blocks, declared
as either procedures or functions.

• You can invoke subprograms from different
environments.

• PL/SQL is an extension to SQL.

• Blocks of PL/SQL code are passed to and
processed by a PL/SQL engine.

• Benefits of PL/SQL:

– Integration

– Improved performance

– Portability

– Modularity of program development

• Subprograms are named PL/SQL blocks, declared
as either procedures or functions.

• You can invoke subprograms from different
environments.

1
Copyright © Oracle Corporation, 2001. All rights reserved.

Declaring Variables

Copyright © Oracle Corporation, 2001. All rights reserved.1-2

ObjectivesObjectives

After completing this lesson, you should be able to
do the following:

• Recognize the basic PL/SQL block and its sections

• Describe the significance of variables in PL/SQL

• Declare PL/SQL variables

• Execute a PL/SQL block

After completing this lesson, you should be able to
do the following:

• Recognize the basic PL/SQL block and its sections

• Describe the significance of variables in PL/SQL

• Declare PL/SQL variables

• Execute a PL/SQL block

Copyright © Oracle Corporation, 2001. All rights reserved.1-3

PL/SQL Block StructurePL/SQL Block Structure

DECLARE (Optional)

Variables, cursors, user-defined exceptions

BEGIN (Mandatory)

– SQL statements

– PL/SQL statements

EXCEPTION (Optional)

Actions to perform when errors occur

END; (Mandatory)

DECLARE

BEGIN

END;

EXCEPTION

…

…
…

Copyright © Oracle Corporation, 2001. All rights reserved.1-4

Executing Statements and PL/SQL BlocksExecuting Statements and PL/SQL Blocks
DECLARE
v_variable VARCHAR2(5);

BEGIN
SELECT column_name
INTO v_variable
FROM table_name;

EXCEPTION
WHEN exception_name THEN
...

END;

DECLARE

BEGIN

END;

EXCEPTION

…

…
…

Copyright © Oracle Corporation, 2001. All rights reserved.1-5

Block TypesBlock Types

Anonymous Procedure Function

[DECLARE]

BEGIN
--statements

[EXCEPTION]

END;

PROCEDURE name
IS

BEGIN
--statements

[EXCEPTION]

END;

FUNCTION name
RETURN datatype
IS
BEGIN
--statements
RETURN value;

[EXCEPTION]

END;

Copyright © Oracle Corporation, 2001. All rights reserved.1-6

Program ConstructsProgram Constructs

DECLARE

BEGIN

END;

EXCEPTION

…

…
…

Tools Constructs

Anonymous blocks
Application procedures or

functions
Application packages

Application triggers

Object types

Database Server
Constructs

Anonymous blocks
Stored procedures or

functions
Stored packages

Database triggers

Object types

Copyright © Oracle Corporation, 2001. All rights reserved.1-7

Use of VariablesUse of Variables

Variables can be used for:

• Temporary storage of data

• Manipulation of stored values

• Reusability

• Ease of maintenance

Variables can be used for:

• Temporary storage of data

• Manipulation of stored values

• Reusability

• Ease of maintenance

Copyright © Oracle Corporation, 2001. All rights reserved.1-8

Handling Variables in PL/SQLHandling Variables in PL/SQL

• Declare and initialize variables in the declaration
section.

• Assign new values to variables in the executable
section.

• Pass values into PL/SQL blocks through
parameters.

• View results through output variables.

• Declare and initialize variables in the declaration
section.

• Assign new values to variables in the executable
section.

• Pass values into PL/SQL blocks through
parameters.

• View results through output variables.

Copyright © Oracle Corporation, 2001. All rights reserved.1-9

Types of VariablesTypes of Variables

• PL/SQL variables:
– Scalar

– Composite

– Reference
– LOB (large objects)

• Non-PL/SQL variables: Bind and host variables

• PL/SQL variables:
– Scalar

– Composite

– Reference
– LOB (large objects)

• Non-PL/SQL variables: Bind and host variables

Copyright © Oracle Corporation, 2001. All rights reserved.1-10

Using iSQL*Plus Variables Within PL/SQL
Blocks

Using iSQL*Plus Variables Within PL/SQL
Blocks

• PL/SQL does not have input or output capability of
its own.

• You can reference substitution variables within a
PL/SQL block with a preceding ampersand.

• iSQL*Plus host (or “bind”) variables can be used
to pass run time values out of the PL/SQL block
back to the iSQL*Plus environment.

• PL/SQL does not have input or output capability of
its own.

• You can reference substitution variables within a
PL/SQL block with a preceding ampersand.

• iSQL*Plus host (or “bind”) variables can be used
to pass run time values out of the PL/SQL block
back to the iSQL*Plus environment.

Copyright © Oracle Corporation, 2001. All rights reserved.1-11

TRUETRUE

Types of VariablesTypes of Variables

25-JAN-0125-JAN-01

AtlantaAtlanta

“Four score and seven years ago
our fathers brought forth upon
this continent, a new nation,
conceived in LIBERTY, and dedicated
to the proposition that all men
are created equal.”

256120.08256120.08

Copyright © Oracle Corporation, 2001. All rights reserved.1-12

Declaring PL/SQL VariablesDeclaring PL/SQL Variables

Syntax:

Examples:

Syntax:

Examples:

identifier [CONSTANT] datatype [NOT NULL]
[:= | DEFAULT expr];

DECLARE
v_hiredate DATE;
v_deptno NUMBER(2) NOT NULL := 10;
v_location VARCHAR2(13) := 'Atlanta';
c_comm CONSTANT NUMBER := 1400;

Copyright © Oracle Corporation, 2001. All rights reserved.1-13

Guidelines for Declaring PL/SQL VariablesGuidelines for Declaring PL/SQL Variables

• Follow naming conventions.

• Initialize variables designated as NOT NULL and
CONSTANT.

• Declare one identifier per line.

• Initialize identifiers by using the assignment
operator (:=) or the DEFAULT reserved word.

• Follow naming conventions.

• Initialize variables designated as NOT NULL and
CONSTANT.

• Declare one identifier per line.

• Initialize identifiers by using the assignment
operator (:=) or the DEFAULT reserved word.

identifier := expr;

Copyright © Oracle Corporation, 2001. All rights reserved.1-14

Naming RulesNaming Rules

• Two variables can have the same name, provided they
are in different blocks.

• The variable name (identifier) should not be the same
as the name of table columns used in the block.

• Two variables can have the same name, provided they
are in different blocks.

• The variable name (identifier) should not be the same
as the name of table columns used in the block.

DECLARE
employee_id NUMBER(6);

BEGIN
SELECT employee_id
INTO employee_id
FROM employees
WHERE last_name = 'Kochhar';

END;
/

Adopt a naming
convention for

PL/SQL identifiers:
for example,

v_employee_id

Copyright © Oracle Corporation, 2001. All rights reserved.1-15

Variable Initialization and KeywordsVariable Initialization and Keywords

• Assignment operator (:=)

• DEFAULT keyword

• NOT NULL constraint

Syntax:

Examples:

• Assignment operator (:=)

• DEFAULT keyword

• NOT NULL constraint

Syntax:

Examples:

identifier := expr;

v_hiredate := '01-JAN-2001';

v_ename := 'Maduro';

Copyright © Oracle Corporation, 2001. All rights reserved.1-17

Scalar Data TypesScalar Data Types

• Hold a single value

• Have no internal components

• Hold a single value

• Have no internal components

25-OCT-9925-OCT-99

AtlantaAtlanta

“Four score and seven years
ago our fathers brought
forth upon this continent, a
new nation, conceived in
LIBERTY, and dedicated to
the proposition that all men
are created equal.”

TRUETRUE

256120.08256120.08

Copyright © Oracle Corporation, 2001. All rights reserved.1-18

Base Scalar Data TypesBase Scalar Data Types

• CHAR [(maximum_length)]
• VARCHAR2 (maximum_length)
• LONG
• LONG RAW
• NUMBER [(precision, scale)]
• BINARY_INTEGER
• PLS_INTEGER
• BOOLEAN

• CHAR [(maximum_length)]
• VARCHAR2 (maximum_length)
• LONG
• LONG RAW
• NUMBER [(precision, scale)]
• BINARY_INTEGER
• PLS_INTEGER
• BOOLEAN

Copyright © Oracle Corporation, 2001. All rights reserved.1-20

Base Scalar Data TypesBase Scalar Data Types

• DATE
• TIMESTAMP
• TIMESTAMP WITH TIME ZONE
• TIMESTAMP WITH LOCAL TIME ZONE
• INTERVAL YEAR TO MONTH
• INTERVAL DAY TO SECOND

• DATE
• TIMESTAMP
• TIMESTAMP WITH TIME ZONE
• TIMESTAMP WITH LOCAL TIME ZONE
• INTERVAL YEAR TO MONTH
• INTERVAL DAY TO SECOND

Copyright © Oracle Corporation, 2001. All rights reserved.1-22

Scalar Variable DeclarationsScalar Variable Declarations

DECLARE
v_job VARCHAR2(9);
v_count BINARY_INTEGER := 0;
v_total_sal NUMBER(9,2) := 0;
v_orderdate DATE := SYSDATE + 7;
c_tax_rate CONSTANT NUMBER(3,2) := 8.25;
v_valid BOOLEAN NOT NULL := TRUE;
...

Examples:Examples:

Copyright © Oracle Corporation, 2001. All rights reserved.1-23

The %TYPE AttributeThe %TYPE Attribute

• Declare a variable according to:
– A database column definition

– Another previously declared variable

• Prefix %TYPE with:

– The database table and column

– The previously declared variable name

• Declare a variable according to:
– A database column definition

– Another previously declared variable

• Prefix %TYPE with:

– The database table and column

– The previously declared variable name

Copyright © Oracle Corporation, 2001. All rights reserved.1-24

Declaring Variables
with the %TYPE Attribute

Declaring Variables
with the %TYPE Attribute

Examples:Examples:

...
v_name employees.last_name%TYPE;
v_balance NUMBER(7,2);
v_min_balance v_balance%TYPE := 10;

...

identifier Table.column_name%TYPE;

Syntax:Syntax:

Copyright © Oracle Corporation, 2001. All rights reserved.1-25

Declaring Boolean VariablesDeclaring Boolean Variables

• Only the values TRUE, FALSE, and NULL can be
assigned to a Boolean variable.

• The variables are compared by the logical
operators AND, OR, and NOT.

• The variables always yield TRUE, FALSE, or NULL.

• Arithmetic, character, and date expressions can be
used to return a Boolean value.

• Only the values TRUE, FALSE, and NULL can be
assigned to a Boolean variable.

• The variables are compared by the logical
operators AND, OR, and NOT.

• The variables always yield TRUE, FALSE, or NULL.

• Arithmetic, character, and date expressions can be
used to return a Boolean value.

Copyright © Oracle Corporation, 2001. All rights reserved.1-26

1 5000
2 2345
3 12
4 3456

1 SMITH
2 JONES
3 NANCY
4 TIM

PL/SQL table structure PL/SQL table structure

BINARY_INTEGER
VARCHAR2

BINARY_INTEGER
NUMBER

Composite Data Types Composite Data Types

TRUE 23-DEC-98 ATLANTA

Copyright © Oracle Corporation, 2001. All rights reserved.1-27

LOB Data Type VariablesLOB Data Type Variables

Book
(CLOB)

Photo
(BLOB)

Movie
(BFILE)

NCLOB

Copyright © Oracle Corporation, 2001. All rights reserved.1-28

Bind VariablesBind Variables

Server

O/S
Bind variable

Copyright © Oracle Corporation, 2001. All rights reserved.1-30

Using Bind VariablesUsing Bind Variables

To reference a bind variable in PL/SQL, you must
prefix its name with a colon (:).

Example:

To reference a bind variable in PL/SQL, you must
prefix its name with a colon (:).

Example:

VARIABLE g_salary NUMBER
BEGIN

SELECT salary
INTO :g_salary
FROM employees
WHERE employee_id = 178;

END;
/
PRINT g_salary

Copyright © Oracle Corporation, 2001. All rights reserved.1-31

Referencing Non-PL/SQL VariablesReferencing Non-PL/SQL Variables

Store the annual salary into a iSQL*Plus host
variable.

• Reference non-PL/SQL variables as host
variables.

• Prefix the references with a colon (:).

Store the annual salary into a iSQL*Plus host
variable.

• Reference non-PL/SQL variables as host
variables.

• Prefix the references with a colon (:).

:g_monthly_sal := v_sal / 12;

Copyright © Oracle Corporation, 2001. All rights reserved.1-32

DBMS_OUTPUT.PUT_LINEDBMS_OUTPUT.PUT_LINE

• An Oracle-supplied packaged procedure

• An alternative for displaying data from a PL/SQL block

• Must be enabled in iSQL*Plus with
SET SERVEROUTPUT ON

• An Oracle-supplied packaged procedure

• An alternative for displaying data from a PL/SQL block

• Must be enabled in iSQL*Plus with
SET SERVEROUTPUT ON

DECLARE
v_sal NUMBER(9,2) := &p_annual_sal;

BEGIN
v_sal := v_sal/12;
DBMS_OUTPUT.PUT_LINE ('The monthly salary is ' ||

TO_CHAR(v_sal));
END;
/

SET SERVEROUTPUT ON
DEFINE p_annual_sal = 60000

Copyright © Oracle Corporation, 2001. All rights reserved.1-33

SummarySummary

In this lesson you should have learned that:

• PL/SQL blocks are composed of the following
sections:
– Declarative (optional)

– Executable (required)

– Exception handling (optional)

• A PL/SQL block can be an anonymous
block, procedure, or function.

In this lesson you should have learned that:

• PL/SQL blocks are composed of the following
sections:
– Declarative (optional)

– Executable (required)

– Exception handling (optional)

• A PL/SQL block can be an anonymous
block, procedure, or function.

DECLARE

BEGIN

END;

EXCEPTION…
…
…

Copyright © Oracle Corporation, 2001. All rights reserved.1-34

SummarySummary

In this lesson you should have learned that:

• PL/SQL identifiers:
– Are defined in the declarative section
– Can be of scalar, composite, reference, or LOB data

type

– Can be based on the structure of another variable
or database object

– Can be initialized

• Variables declared in an external environment
such as iSQL*Plus are called host variables.

• Use DBMS_OUTPUT.PUT_LINE to display data from
a PL/SQL block.

In this lesson you should have learned that:

• PL/SQL identifiers:
– Are defined in the declarative section
– Can be of scalar, composite, reference, or LOB data

type

– Can be based on the structure of another variable
or database object

– Can be initialized

• Variables declared in an external environment
such as iSQL*Plus are called host variables.

• Use DBMS_OUTPUT.PUT_LINE to display data from
a PL/SQL block.

Copyright © Oracle Corporation, 2001. All rights reserved.1-35

Practice 1 OverviewPractice 1 Overview

This practice covers the following topics:

• Determining validity of declarations

• Declaring a simple PL/SQL block

• Executing a simple PL/SQL block

This practice covers the following topics:

• Determining validity of declarations

• Declaring a simple PL/SQL block

• Executing a simple PL/SQL block

2
Copyright © Oracle Corporation, 2001. All rights reserved.

Writing Executable Statements

Copyright © Oracle Corporation, 2001. All rights reserved.2-2

ObjectivesObjectives

After completing this lesson, you should be able to
do the following:

• Describe the significance of the executable
section

• Use identifiers correctly

• Write statements in the executable section

• Describe the rules of nested blocks

• Execute and test a PL/SQL block

• Use coding conventions

After completing this lesson, you should be able to
do the following:

• Describe the significance of the executable
section

• Use identifiers correctly

• Write statements in the executable section

• Describe the rules of nested blocks

• Execute and test a PL/SQL block

• Use coding conventions

Copyright © Oracle Corporation, 2001. All rights reserved.2-3

PL/SQL Block Syntax and Guidelines

• Statements can continue over several lines.

• Lexical units can be classified as:
– Delimiters

– Identifiers

– Literals

– Comments

Copyright © Oracle Corporation, 2001. All rights reserved.2-5

IdentifiersIdentifiers

• Can contain up to 30 characters

• Must begin with an alphabetic character

• Can contain numerals, dollar signs, underscores,
and number signs

• Cannot contain characters such as hyphens,
slashes, and spaces

• Should not have the same name as a database
table column name

• Should not be reserved words

• Can contain up to 30 characters

• Must begin with an alphabetic character

• Can contain numerals, dollar signs, underscores,
and number signs

• Cannot contain characters such as hyphens,
slashes, and spaces

• Should not have the same name as a database
table column name

• Should not be reserved words

Copyright © Oracle Corporation, 2001. All rights reserved.2-6

PL/SQL Block Syntax and GuidelinesPL/SQL Block Syntax and Guidelines

• Literals
– Character and date literals must be enclosed in

single quotation marks.

– Numbers can be simple values or scientific
notation.

• A slash (/) runs the PL/SQL block in a script file
or in some tools such as iSQL*PLUS.

• Literals
– Character and date literals must be enclosed in

single quotation marks.

– Numbers can be simple values or scientific
notation.

• A slash (/) runs the PL/SQL block in a script file
or in some tools such as iSQL*PLUS.

v_name := 'Henderson';

Copyright © Oracle Corporation, 2001. All rights reserved.2-7

Commenting CodeCommenting Code

• Prefix single-line comments with two dashes (--).

• Place multiple-line comments between the symbols
/* and */.

Example:

• Prefix single-line comments with two dashes (--).

• Place multiple-line comments between the symbols
/* and */.

Example:

DECLARE
...
v_sal NUMBER (9,2);

BEGIN
/* Compute the annual salary based on the

monthly salary input from the user */
v_sal := :g_monthly_sal * 12;

END; -- This is the end of the block

Copyright © Oracle Corporation, 2001. All rights reserved.2-8

SQL Functions in PL/SQLSQL Functions in PL/SQL

• Available in procedural statements:
– Single-row number
– Single-row character
– Data type conversion
– Date
– Timestamp
– GREATEST and LEAST
– Miscellaneous functions

• Not available in procedural statements:
– DECODE
– Group functions

• Available in procedural statements:
– Single-row number
– Single-row character
– Data type conversion
– Date
– Timestamp
– GREATEST and LEAST
– Miscellaneous functions

• Not available in procedural statements:
– DECODE
– Group functions

Same as in SQL}}

Copyright © Oracle Corporation, 2001. All rights reserved.2-9

SQL Functions in PL/SQL: ExamplesSQL Functions in PL/SQL: Examples

• Build the mailing list for a company.

• Convert the employee name to lowercase.

• Build the mailing list for a company.

• Convert the employee name to lowercase.

v_mailing_address := v_name||CHR(10)||

v_address||CHR(10)||v_state||
CHR(10)||v_zip;

v_ename := LOWER(v_ename);

Copyright © Oracle Corporation, 2001. All rights reserved.2-10

Data Type ConversionData Type Conversion

• Convert data to comparable data types.

• Mixed data types can result in an error and affect
performance.

• Conversion functions:
– TO_CHAR
– TO_DATE
– TO_NUMBER

• Convert data to comparable data types.

• Mixed data types can result in an error and affect
performance.

• Conversion functions:
– TO_CHAR
– TO_DATE
– TO_NUMBER

DECLARE
v_date DATE := TO_DATE('12-JAN-2001', 'DD-MON-YYYY');

BEGIN
. . .

Copyright © Oracle Corporation, 2001. All rights reserved.2-11

Data Type ConversionData Type Conversion

This statement produces a compilation error if the
variable v_date is declared as a DATE data type.
This statement produces a compilation error if the
variable v_date is declared as a DATE data type.

v_date := 'January 13, 2001';

Copyright © Oracle Corporation, 2001. All rights reserved.2-12

Data Type ConversionData Type Conversion

v_date := TO_DATE ('January 13, 2001',

'Month DD, YYYY');

To correct the error, use the TO_DATE conversion
function.
To correct the error, use the TO_DATE conversion
function.

Copyright © Oracle Corporation, 2001. All rights reserved.2-13

Nested Blocks
and Variable Scope

Nested Blocks
and Variable Scope

• PL/SQL blocks can be nested wherever an
executable statement is allowed.

• A nested block becomes a statement.

• An exception section can contain nested blocks.

• The scope of an identifier is that region of a
program unit (block, subprogram, or package)
from which you can reference the identifier.

• PL/SQL blocks can be nested wherever an
executable statement is allowed.

• A nested block becomes a statement.

• An exception section can contain nested blocks.

• The scope of an identifier is that region of a
program unit (block, subprogram, or package)
from which you can reference the identifier.

Copyright © Oracle Corporation, 2001. All rights reserved.2-14

Nested Blocks and Variable ScopeNested Blocks and Variable Scope

...
x BINARY_INTEGER;

BEGIN
...
DECLARE

y NUMBER;
BEGIN

y:= x;
END;
...

END;

Scope of x

Scope of y

Example:Example:

Copyright © Oracle Corporation, 2001. All rights reserved.2-15

Identifier ScopeIdentifier Scope

An identifier is visible in the regions where you can
reference the identifier without having to qualify it:

• A block can look up to the enclosing block.

• A block cannot look down to enclosed blocks.

An identifier is visible in the regions where you can
reference the identifier without having to qualify it:

• A block can look up to the enclosing block.

• A block cannot look down to enclosed blocks.

Copyright © Oracle Corporation, 2001. All rights reserved.2-16

Qualify an IdentifierQualify an Identifier

• The qualifier can be the label of an enclosing
block.

• Qualify an identifier by using the block label prefix.

• The qualifier can be the label of an enclosing
block.

• Qualify an identifier by using the block label prefix.

<<outer>>
DECLARE

birthdate DATE;
BEGIN

DECLARE
birthdate DATE;

BEGIN
...
outer.birthdate :=

TO_DATE('03-AUG-1976',
'DD-MON-YYYY');

END;
....
END;

Copyright © Oracle Corporation, 2001. All rights reserved.2-17

Determining Variable ScopeDetermining Variable Scope
Class ExerciseClass Exercise

<<outer>>
DECLARE

v_sal NUMBER(7,2) := 60000;
v_comm NUMBER(7,2) := v_sal * 0.20;
v_message VARCHAR2(255) := ' eligible for commission';

BEGIN
DECLARE

v_sal NUMBER(7,2) := 50000;
v_comm NUMBER(7,2) := 0;
v_total_comp NUMBER(7,2) := v_sal + v_comm;

BEGIN
v_message := 'CLERK not'||v_message;
outer.v_comm := v_sal * 0.30;

END;
v_message := 'SALESMAN'||v_message;

END;
2

1

Copyright © Oracle Corporation, 2001. All rights reserved.2-18

Operators in PL/SQLOperators in PL/SQL

• Logical

• Arithmetic

• Concatenation

• Parentheses to control order
of operations

• Exponential operator (**)

• Logical

• Arithmetic

• Concatenation

• Parentheses to control order
of operations

• Exponential operator (**)

Same as in SQL}}

Copyright © Oracle Corporation, 2001. All rights reserved.2-19

Examples:

• Increment the counter for a loop.

• Set the value of a Boolean flag.

• Validate whether an employee number contains a
value.

Examples:

• Increment the counter for a loop.

• Set the value of a Boolean flag.

• Validate whether an employee number contains a
value.

Operators in PL/SQLOperators in PL/SQL

v_count := v_count + 1;

v_equal := (v_n1 = v_n2);

v_valid := (v_empno IS NOT NULL);

Copyright © Oracle Corporation, 2001. All rights reserved.2-20

Programming GuidelinesProgramming Guidelines

Make code maintenance easier by:

• Documenting code with comments

• Developing a case convention for the code

• Developing naming conventions for identifiers and
other objects

• Enhancing readability by indenting

Make code maintenance easier by:

• Documenting code with comments

• Developing a case convention for the code

• Developing naming conventions for identifiers and
other objects

• Enhancing readability by indenting

Copyright © Oracle Corporation, 2001. All rights reserved.2-21

Indenting CodeIndenting Code

For clarity, indent each level of code.

Example:

For clarity, indent each level of code.

Example:

BEGIN
IF x=0 THEN

y:=1;
END IF;

END;

DECLARE
v_deptno NUMBER(4);
v_location_id NUMBER(4);

BEGIN
SELECT department_id,

location_id
INTO v_deptno,

v_location_id
FROM departments
WHERE department_name

= 'Sales';
...
END;
/

Copyright © Oracle Corporation, 2001. All rights reserved.2-22

SummarySummary

In this lesson you should have learned that:

• PL/SQL block syntax and guidelines

• How to use identifiers correctly

• PL/SQL block structure: nesting blocks and
scoping rules

• PL/SQL programming:
– Functions

– Data type conversions

– Operators

– Conventions and guidelines

In this lesson you should have learned that:

• PL/SQL block syntax and guidelines

• How to use identifiers correctly

• PL/SQL block structure: nesting blocks and
scoping rules

• PL/SQL programming:
– Functions

– Data type conversions

– Operators

– Conventions and guidelines

DECLARE

BEGIN

END;

EXCEPTION

…

…
…

Copyright © Oracle Corporation, 2001. All rights reserved.2-23

Practice 2 OverviewPractice 2 Overview

This practice covers the following topics:

• Reviewing scoping and nesting rules

• Developing and testing PL/SQL blocks

This practice covers the following topics:

• Reviewing scoping and nesting rules

• Developing and testing PL/SQL blocks

3
Copyright © Oracle Corporation, 2001. All rights reserved.

Interacting with
the Oracle Server

Copyright © Oracle Corporation, 2001. All rights reserved.3-2

ObjectivesObjectives

After completing this lesson, you should be able to
do the following:
• Write a successful SELECT statement in PL/SQL

• Write DML statements in PL/SQL

• Control transactions in PL/SQL

• Determine the outcome of SQL data manipulation
language (DML) statements

After completing this lesson, you should be able to
do the following:
• Write a successful SELECT statement in PL/SQL

• Write DML statements in PL/SQL

• Control transactions in PL/SQL

• Determine the outcome of SQL data manipulation
language (DML) statements

Copyright © Oracle Corporation, 2001. All rights reserved.3-3

SQL Statements in PL/SQLSQL Statements in PL/SQL

• Extract a row of data from the database by using
the SELECT command.

• Make changes to rows in the database by using
DML commands.

• Control a transaction with the COMMIT, ROLLBACK,
or SAVEPOINT command.

• Determine DML outcome with implicit cursor
attributes.

• Extract a row of data from the database by using
the SELECT command.

• Make changes to rows in the database by using
DML commands.

• Control a transaction with the COMMIT, ROLLBACK,
or SAVEPOINT command.

• Determine DML outcome with implicit cursor
attributes.

Copyright © Oracle Corporation, 2001. All rights reserved.3-4

SELECT Statements in PL/SQLSELECT Statements in PL/SQL

Retrieve data from the database with a SELECT
statement.

Syntax:

Retrieve data from the database with a SELECT
statement.

Syntax:

SELECT select_list
INTO {variable_name[, variable_name]...

| record_name}
FROM table
[WHERE condition];

Copyright © Oracle Corporation, 2001. All rights reserved.3-6

SELECT Statements in PL/SQLSELECT Statements in PL/SQL

• The INTO clause is required.

• Queries must return one and only one row.

Example:

• The INTO clause is required.

• Queries must return one and only one row.

Example:
DECLARE
v_deptno NUMBER(4);
v_location_id NUMBER(4);

BEGIN
SELECT department_id, location_id
INTO v_deptno, v_location_id
FROM departments
WHERE department_name = 'Sales';
...

END;
/

Copyright © Oracle Corporation, 2001. All rights reserved.3-7

Retrieving Data in PL/SQL

Retrieve the hire date and the salary for the specified
employee.

Example:
DECLARE
v_hire_date employees.hire_date%TYPE;
v_salary employees.salary%TYPE;

BEGIN
SELECT hire_date, salary
INTO v_hire_date, v_salary
FROM employees
WHERE employee_id = 100;
...

END;
/

Copyright © Oracle Corporation, 2001. All rights reserved.3-8

Retrieving Data in PL/SQLRetrieving Data in PL/SQL

Return the sum of the salaries for all employees in
the specified department.

Example:

Return the sum of the salaries for all employees in
the specified department.

Example:
SET SERVEROUTPUT ON
DECLARE
v_sum_sal NUMBER(10,2);
v_deptno NUMBER NOT NULL := 60;

BEGIN
SELECT SUM(salary) -- group function
INTO v_sum_sal
FROM employees
WHERE department_id = v_deptno;
DBMS_OUTPUT.PUT_LINE ('The sum salary is ' ||

TO_CHAR(v_sum_sal));
END;
/

Copyright © Oracle Corporation, 2001. All rights reserved.3-9

Naming ConventionsNaming Conventions

DECLARE
hire_date employees.hire_date%TYPE;
sysdate hire_date%TYPE;
employee_id employees.employee_id%TYPE := 176;

BEGIN
SELECT hire_date, sysdate
INTO hire_date, sysdate
FROM employees
WHERE employee_id = employee_id;

END;
/

Copyright © Oracle Corporation, 2001. All rights reserved.3-10

INSERT

UPDATE

DELETE

Manipulating Data Using PL/SQLManipulating Data Using PL/SQL

Make changes to database tables by using DML
commands:

• INSERT
• UPDATE
• DELETE
• MERGE

Make changes to database tables by using DML
commands:

• INSERT
• UPDATE
• DELETE
• MERGE MERGE

Copyright © Oracle Corporation, 2001. All rights reserved.3-11

Inserting DataInserting Data

Add new employee information to the EMPLOYEES
table.

Example:

Add new employee information to the EMPLOYEES
table.

Example:

BEGIN
INSERT INTO employees
(employee_id, first_name, last_name, email,
hire_date, job_id, salary)
VALUES
(employees_seq.NEXTVAL, 'Ruth', 'Cores', 'RCORES',
sysdate, 'AD_ASST', 4000);

END;
/

Copyright © Oracle Corporation, 2001. All rights reserved.3-12

Updating DataUpdating Data

Increase the salary of all employees who are stock
clerks.

Example:

Increase the salary of all employees who are stock
clerks.

Example:

DECLARE
v_sal_increase employees.salary%TYPE := 800;

BEGIN
UPDATE employees
SET salary = salary + v_sal_increase
WHERE job_id = 'ST_CLERK';

END;
/

Copyright © Oracle Corporation, 2001. All rights reserved.3-13

Deleting DataDeleting Data

Delete rows that belong to department 10 from the
EMPLOYEES table.

Example:

Delete rows that belong to department 10 from the
EMPLOYEES table.

Example:

DECLARE
v_deptno employees.department_id%TYPE := 10;

BEGIN
DELETE FROM employees
WHERE department_id = v_deptno;

END;
/

Copyright © Oracle Corporation, 2001. All rights reserved.3-14

Merging Rows
Insert or update rows in the COPY_EMP table to match
the EMPLOYEES table.

DECLARE
v_empno employees.employee_id%TYPE := 100;

BEGIN
MERGE INTO copy_emp c

USING employees e
ON (e.employee_id = v_empno)

WHEN MATCHED THEN
UPDATE SET

c.first_name = e.first_name,
c.last_name = e.last_name,
c.email = e.email,
. . .

WHEN NOT MATCHED THEN
INSERT VALUES(e.employee_id, e.first_name, e.last_name,

. . .,e.department_id);
END;

Copyright © Oracle Corporation, 2001. All rights reserved.3-16

Naming ConventionsNaming Conventions

• Use a naming convention to avoid ambiguity in the
WHERE clause.

• Database columns and identifiers should have
distinct names.

• Syntax errors can arise because PL/SQL checks
the database first for a column in the table.

• The names of local variables and formal
parameters take precedence over the names of
database tables.

• The names of database table columns take
precedence over the names of local variables.

• Use a naming convention to avoid ambiguity in the
WHERE clause.

• Database columns and identifiers should have
distinct names.

• Syntax errors can arise because PL/SQL checks
the database first for a column in the table.

• The names of local variables and formal
parameters take precedence over the names of
database tables.

• The names of database table columns take
precedence over the names of local variables.

Copyright © Oracle Corporation, 2001. All rights reserved.3-18

SQL CursorSQL Cursor

• A cursor is a private SQL work area.

• There are two types of cursors:
– Implicit cursors

– Explicit cursors

• The Oracle server uses implicit cursors to parse
and execute your SQL statements.

• Explicit cursors are explicitly declared by the
programmer.

• A cursor is a private SQL work area.

• There are two types of cursors:
– Implicit cursors

– Explicit cursors

• The Oracle server uses implicit cursors to parse
and execute your SQL statements.

• Explicit cursors are explicitly declared by the
programmer.

Copyright © Oracle Corporation, 2001. All rights reserved.3-19

SQL Cursor AttributesSQL Cursor Attributes

Using SQL cursor attributes, you can test the
outcome of your SQL statements.
Using SQL cursor attributes, you can test the
outcome of your SQL statements.

SQL%ROWCOUNT Number of rows affected by the
most recent SQL statement (an
integer value)

SQL%FOUND Boolean attribute that evaluates to
TRUE if the most recent SQL
statement affects one or more rows

SQL%NOTFOUND Boolean attribute that evaluates to
TRUE if the most recent SQL
statement does not affect any rows

SQL%ISOPEN Always evaluates to FALSE because
PL/SQL closes implicit cursors
immediately after they are executed

Copyright © Oracle Corporation, 2001. All rights reserved.3-20

SQL Cursor AttributesSQL Cursor Attributes

Delete rows that have the specified employee ID from
the EMPLOYEES table. Print the number of rows
deleted.

Example:

Delete rows that have the specified employee ID from
the EMPLOYEES table. Print the number of rows
deleted.

Example:

VARIABLE rows_deleted VARCHAR2(30)
DECLARE
v_employee_id employees.employee_id%TYPE := 176;

BEGIN
DELETE FROM employees
WHERE employee_id = v_employee_id;
:rows_deleted := (SQL%ROWCOUNT ||

' row deleted.');
END;
/
PRINT rows_deleted

Copyright © Oracle Corporation, 2001. All rights reserved.3-21

Transaction Control StatementsTransaction Control Statements

• Initiate a transaction with the first DML command
to follow a COMMIT or ROLLBACK.

• Use COMMIT and ROLLBACK SQL statements to
terminate a transaction explicitly.

• Initiate a transaction with the first DML command
to follow a COMMIT or ROLLBACK.

• Use COMMIT and ROLLBACK SQL statements to
terminate a transaction explicitly.

Copyright © Oracle Corporation, 2001. All rights reserved.3-22

SummarySummary

In this lesson you should have learned how to:

• Embed SQL in the PL/SQL block using SELECT,
INSERT, UPDATE, DELETE, and MERGE

• Embed transaction control statements in a PL/SQL
block COMMIT, ROLLBACK, and SAVEPOINT

In this lesson you should have learned how to:

• Embed SQL in the PL/SQL block using SELECT,
INSERT, UPDATE, DELETE, and MERGE

• Embed transaction control statements in a PL/SQL
block COMMIT, ROLLBACK, and SAVEPOINT

Copyright © Oracle Corporation, 2001. All rights reserved.3-23

SummarySummary

In this lesson you should have learned that:

• There are two cursor types: implicit and explicit.

• Implicit cursor attributes are used to verify the
outcome of DML statements:
– SQL%ROWCOUNT
– SQL%FOUND
– SQL%NOTFOUND
– SQL%ISOPEN

• Explicit cursors are defined by the programmer.

In this lesson you should have learned that:

• There are two cursor types: implicit and explicit.

• Implicit cursor attributes are used to verify the
outcome of DML statements:
– SQL%ROWCOUNT
– SQL%FOUND
– SQL%NOTFOUND
– SQL%ISOPEN

• Explicit cursors are defined by the programmer.

Copyright © Oracle Corporation, 2001. All rights reserved.3-24

Practice 3 OverviewPractice 3 Overview

This practice covers creating a PL/SQL block to:

• Select data from a table

• Insert data into a table

• Update data in a table

• Delete a record from a table

This practice covers creating a PL/SQL block to:

• Select data from a table

• Insert data into a table

• Update data in a table

• Delete a record from a table

4
Copyright © Oracle Corporation, 2001. All rights reserved.

Writing Control Structures

Copyright © Oracle Corporation, 2001. All rights reserved.4-2

Objectives

After completing this lesson, you should be able to
do the following:

• Identify the uses and types of control structures

• Construct an IF statement

• Use CASE expressions

• Construct and identify different loop statements

• Use logic tables

• Control block flow using nested loops and labels

Copyright © Oracle Corporation, 2001. All rights reserved.4-3

Controlling PL/SQL Flow of Execution

• You can change the logical execution of
statements using conditional IF statements and
loop control structures.

• Conditional IF statements:
– IF-THEN-END IF
– IF-THEN-ELSE-END IF
– IF-THEN-ELSIF-END IF

Copyright © Oracle Corporation, 2001. All rights reserved.4-4

IF Statements

IF condition THEN
statements;

[ELSIF condition THEN
statements;]

[ELSE
statements;]

END IF;

Syntax:

If the employee name is Gietz, set the Manager ID to
102.

Syntax:

If the employee name is Gietz, set the Manager ID to
102.
IF UPPER(v_last_name) = 'GIETZ' THEN
v_mgr := 102;

END IF;

Copyright © Oracle Corporation, 2001. All rights reserved.4-5

Simple IF Statements

If the last name is Vargas:

• Set job ID to SA_REP

• Set department number to 80

. . .
IF v_ename = 'Vargas' THEN

v_job := 'SA_REP';
v_deptno := 80;

END IF;
. . .

Copyright © Oracle Corporation, 2001. All rights reserved.4-6

Compound IF Statements

If the last name is Vargas and the salary is more than
6500:

Set department number to 60.

. . .
IF v_ename = 'Vargas' AND salary > 6500 THEN

v_deptno := 60;
END IF;
. . .

Copyright © Oracle Corporation, 2001. All rights reserved.4-7

IF-THEN-ELSE Statement Execution Flow

IF condition
TRUE

THEN actions
(including further IF

statements)

NOT TRUE

ELSE actions
(including further IF

statements)

Copyright © Oracle Corporation, 2001. All rights reserved.4-8

IF-THEN-ELSE Statements

Set a Boolean flag to TRUE if the hire date is greater
than five years; otherwise, set the Boolean flag to
FALSE.
DECLARE

v_hire_date DATE := '12-Dec-1990';
v_five_years BOOLEAN;

BEGIN
. . .
IF MONTHS_BETWEEN(SYSDATE,v_hire_date)/12 > 5 THEN

v_five_years := TRUE;
ELSE

v_five_years := FALSE;
END IF;
...

Copyright © Oracle Corporation, 2001. All rights reserved.4-9

IF-THEN-ELSIF
Statement Execution Flow

IF condition
TRUE

THEN actions

NOT TRUE

ELSIF
condition

TRUE

THEN actions

NOT TRUE

ELSE
actions

Copyright © Oracle Corporation, 2001. All rights reserved.4-11

IF-THEN-ELSIF Statements

For a given value, calculate a percentage of that value
based on a condition.

Example:
. . .
IF v_start > 100 THEN

v_start := 0.2 * v_start;
ELSIF v_start >= 50 THEN

v_start := 0.5 * v_start;
ELSE

v_start := 0.1 * v_start;
END IF;
. . .

Copyright © Oracle Corporation, 2001. All rights reserved.4-12

CASE Expressions

• A CASE expression selects a result and returns it.

• To select the result, the CASE expression uses an
expression whose value is used to select one of
several alternatives.

CASE selector
WHEN expression1 THEN result1
WHEN expression2 THEN result2
...
WHEN expressionN THEN resultN
[ELSE resultN+1;]

END;

Copyright © Oracle Corporation, 2001. All rights reserved.4-13

CASE Expressions: Example

SET SERVEROUTPUT ON
DECLARE

v_grade CHAR(1) := UPPER('&p_grade');
v_appraisal VARCHAR2(20);

BEGIN
v_appraisal :=
CASE v_grade

WHEN 'A' THEN 'Excellent'
WHEN 'B' THEN 'Very Good'
WHEN 'C' THEN 'Good'
ELSE 'No such grade'

END;
DBMS_OUTPUT.PUT_LINE ('Grade: '|| v_grade || '

Appraisal ' || v_appraisal);
END;
/

Copyright © Oracle Corporation, 2001. All rights reserved.4-15

Handling Nulls

When working with nulls, you can avoid some
common mistakes by keeping in mind the following
rules:

• Simple comparisons involving nulls always yield
NULL.

• Applying the logical operator NOT to a null yields
NULL.

• In conditional control statements, if the condition
yields NULL, its associated sequence of
statements is not executed.

Copyright © Oracle Corporation, 2001. All rights reserved.4-16

Logic Tables

Build a simple Boolean condition with a comparison
operator.

NOT

TRUE

FALSE

NULL

OR

TRUE

FALSE

NULL

TRUE FALSE NULL

FALSE

TRUE

NULL

AND

TRUE

FALSE

NULL

TRUE FALSE NULL

TRUE

NULL NULL

NULL

FALSE FALSE

FALSE

FALSE

FALSE

TRUE

TRUE

TRUE

TRUETRUE

FALSE

NULL NULL

NULL

Copyright © Oracle Corporation, 2001. All rights reserved.4-17

Boolean Conditions

What is the value of V_FLAG in each case?

V_REORDER_FLAG V_AVAILABLE_FLAG V_FLAG

TRUE TRUE

TRUE FALSE

NULL TRUE

NULL FALSE

v_flag := v_reorder_flag AND v_available_flag;

?

?

?

?

Copyright © Oracle Corporation, 2001. All rights reserved.4-18

Iterative Control: LOOP Statements

• Loops repeat a statement or sequence of
statements multiple times.

• There are three loop types:
– Basic loop
– FOR loop

– WHILE loop

Copyright © Oracle Corporation, 2001. All rights reserved.4-19

Basic Loops

Syntax:

LOOP
statement1;
. . .
EXIT [WHEN condition];

END LOOP;

condition is a Boolean variable or
expression (TRUE, FALSE, or NULL);

-- delimiter

-- statements

-- EXIT statement

-- delimiter

Copyright © Oracle Corporation, 2001. All rights reserved.4-20

DECLARE
v_country_id locations.country_id%TYPE := 'CA';
v_location_id locations.location_id%TYPE;
v_counter NUMBER(2) := 1;
v_city locations.city%TYPE := 'Montreal';

BEGIN
SELECT MAX(location_id) INTO v_location_id FROM locations
WHERE country_id = v_country_id;
LOOP

INSERT INTO locations(location_id, city, country_id)
VALUES((v_location_id + v_counter),v_city, v_country_id);
v_counter := v_counter + 1;
EXIT WHEN v_counter > 3;

END LOOP;
END;
/

Basic Loops
Example:

Copyright © Oracle Corporation, 2001. All rights reserved.4-21

WHILE Loops

Syntax:

Use the WHILE loop to repeat statements while a
condition is TRUE.

WHILE condition LOOP
statement1;
statement2;
. . .

END LOOP;

Condition is
evaluated at the
beginning of
each iteration.

Copyright © Oracle Corporation, 2001. All rights reserved.4-22

WHILE Loops

Example:

DECLARE
v_country_id locations.country_id%TYPE := 'CA';
v_location_id locations.location_id%TYPE;
v_city locations.city%TYPE := 'Montreal';
v_counter NUMBER := 1;

BEGIN
SELECT MAX(location_id) INTO v_location_id FROM locations
WHERE country_id = v_country_id;
WHILE v_counter <= 3 LOOP

INSERT INTO locations(location_id, city, country_id)
VALUES((v_location_id + v_counter), v_city, v_country_id);
v_counter := v_counter + 1;

END LOOP;
END;
/

Copyright © Oracle Corporation, 2001. All rights reserved.4-23

FOR Loops

Syntax:

• Use a FOR loop to shortcut the test for the number
of iterations.

• Do not declare the counter; it is declared
implicitly.

• 'lower_bound .. upper_bound' is required
syntax.

FOR counter IN [REVERSE]
lower_bound..upper_bound LOOP

statement1;
statement2;
. . .

END LOOP;

Copyright © Oracle Corporation, 2001. All rights reserved.4-24

FOR Loops

Insert three new locations IDs for the country code of CA
and the city of Montreal.
DECLARE

v_country_id locations.country_id%TYPE := 'CA';
v_location_id locations.location_id%TYPE;
v_city locations.city%TYPE := 'Montreal';

BEGIN
SELECT MAX(location_id) INTO v_location_id

FROM locations
WHERE country_id = v_country_id;

FOR i IN 1..3 LOOP
INSERT INTO locations(location_id, city, country_id)
VALUES((v_location_id + i), v_city, v_country_id);

END LOOP;
END;
/

Copyright © Oracle Corporation, 2001. All rights reserved.4-25

FOR Loops

Guidelines

• Reference the counter within the loop only; it is
undefined outside the loop.

• Do not reference the counter as the target of an
assignment.

Copyright © Oracle Corporation, 2001. All rights reserved.4-26

Guidelines While Using Loops

• Use the basic loop when the statements inside the
loop must execute at least once.

• Use the WHILE loop if the condition has to be
evaluated at the start of each iteration.

• Use a FOR loop if the number of iterations is known.

Copyright © Oracle Corporation, 2001. All rights reserved.4-27

Nested Loops and Labels

• Nest loops to multiple levels.

• Use labels to distinguish between blocks and
loops.

• Exit the outer loop with the EXIT statement that
references the label.

Copyright © Oracle Corporation, 2001. All rights reserved.4-28

Nested Loops and Labels

...
BEGIN
<<Outer_loop>>
LOOP

v_counter := v_counter+1;
EXIT WHEN v_counter>10;

<<Inner_loop>>
LOOP
...
EXIT Outer_loop WHEN total_done = 'YES';
-- Leave both loops
EXIT WHEN inner_done = 'YES';
-- Leave inner loop only
...

END LOOP Inner_loop;
...

END LOOP Outer_loop;
END;

Copyright © Oracle Corporation, 2001. All rights reserved.4-29

Summary

In this lesson you should have learned to:

Change the logical flow of statements by using
control structures.
• Conditional (IF statement)

• CASE Expressions

• Loops:
– Basic loop
– FOR loop

– WHILE loop

• EXIT statements

Copyright © Oracle Corporation, 2001. All rights reserved.4-30

Practice 4 Overview

This practice covers the following topics:
• Performing conditional actions using the IF

statement

• Performing iterative steps using the loop structure

5
Copyright © Oracle Corporation, 2001. All rights reserved.

Working with Composite
Data Types

Copyright © Oracle Corporation, 2001. All rights reserved.5-2

Objectives

After completing this lesson, you should be able to
do the following:

• Create user-defined PL/SQL records

• Create a record with the %ROWTYPE attribute

• Create an INDEX BY table

• Create an INDEX BY table of records

• Describe the difference between records, tables,
and tables of records

Copyright © Oracle Corporation, 2001. All rights reserved.5-3

Composite Data Types

• Are of two types:
– PL/SQL RECORDs

– PL/SQL Collections
– INDEX BY Table

– Nested Table
– VARRAY

• Contain internal components

• Are reusable

Copyright © Oracle Corporation, 2001. All rights reserved.5-4

PL/SQL Records

• Must contain one or more components of any scalar,
RECORD, or INDEX BY table data type, called fields

• Are similar in structure to records in a third
generation language (3GL)

• Are not the same as rows in a database table

• Treat a collection of fields as a logical unit

• Are convenient for fetching a row of data from a table
for processing

Copyright © Oracle Corporation, 2001. All rights reserved.5-5

Creating a PL/SQL Record

Syntax:

Where field_declaration is:

TYPE type_name IS RECORD
(field_declaration[, field_declaration]…);

identifier type_name;

field_name {field_type | variable%TYPE
| table.column%TYPE | table%ROWTYPE}
[[NOT NULL] {:= | DEFAULT} expr]

Copyright © Oracle Corporation, 2001. All rights reserved.5-6

Creating a PL/SQL Record

Declare variables to store the name, job, and salary of
a new employee.

Example:
...
TYPE emp_record_type IS RECORD

(last_name VARCHAR2(25),
job_id VARCHAR2(10),
salary NUMBER(8,2));

emp_record emp_record_type;
...

Copyright © Oracle Corporation, 2001. All rights reserved.5-7

PL/SQL Record Structure

Field1 (data type) Field2 (data type) Field3 (data type)

100 King AD_PRES

Field1 (data type) Field2 (data type) Field3 (data type)

Example:Example:

employee_id number(6) last_name varchar2(25) job_id varchar2(10)

Copyright © Oracle Corporation, 2001. All rights reserved.5-8

The %ROWTYPE Attribute

• Declare a variable according to a collection of
columns in a database table or view.

• Prefix %ROWTYPE with the database table.

• Fields in the record take their names and data
types from the columns of the table or view.

Copyright © Oracle Corporation, 2001. All rights reserved.5-10

Advantages of Using %ROWTYPE

• The number and data types of the underlying
database columns need not be known.

• The number and data types of the underlying
database column may change at run time.

• The attribute is useful when retrieving a row with
the SELECT * statement.

Copyright © Oracle Corporation, 2001. All rights reserved.5-11

The %ROWTYPE Attribute

Examples:

Declare a variable to store the information about a
department from the DEPARTMENTS table.

Declare a variable to store the information about an
employee from the EMPLOYEES table.

dept_record departments%ROWTYPE;

emp_record employees%ROWTYPE;

Copyright © Oracle Corporation, 2001. All rights reserved.5-13

INDEX BY Tables

• Are composed of two components:
– Primary key of data type BINARY_INTEGER
– Column of scalar or record data type

• Can increase in size dynamically because they are
unconstrained

Copyright © Oracle Corporation, 2001. All rights reserved.5-14

Creating an INDEX BY Table

Syntax:

TYPE type_name IS TABLE OF
{column_type | variable%TYPE
| table.column%TYPE} [NOT NULL]
| table.%ROWTYPE
[INDEX BY BINARY_INTEGER];

identifier type_name;

...
TYPE ename_table_type IS TABLE OF

employees.last_name%TYPE
INDEX BY BINARY_INTEGER;

ename_table ename_table_type;
...

Example:

Declare an INDEX BY table to store names.

Copyright © Oracle Corporation, 2001. All rights reserved.5-15

INDEX BY Table Structure

Unique identifier Column

... ...

1 Jones

2 Smith

3 Maduro

... ...

BINARY_INTEGER Scalar

Copyright © Oracle Corporation, 2001. All rights reserved.5-16

Creating an INDEX BY Table

DECLARE
TYPE ename_table_type IS TABLE OF

employees.last_name%TYPE
INDEX BY BINARY_INTEGER;

TYPE hiredate_table_type IS TABLE OF DATE
INDEX BY BINARY_INTEGER;

ename_table ename_table_type;
hiredate_table hiredate_table_type;

BEGIN
ename_table(1) := 'CAMERON';
hiredate_table(8) := SYSDATE + 7;

IF ename_table.EXISTS(1) THEN
INSERT INTO ...

...
END;
/

Copyright © Oracle Corporation, 2001. All rights reserved.5-17

Using INDEX BY Table Methods

The following methods make INDEX BY tables
easier to use:

– NEXT
– TRIM
– DELETE

– EXISTS
– COUNT
– FIRST and LAST
– PRIOR

Copyright © Oracle Corporation, 2001. All rights reserved.5-18

INDEX BY Table of Records

• Define a TABLE variable with a permitted PL/SQL
data type.

• Declare a PL/SQL variable to hold department
information.

Example:

• Define a TABLE variable with a permitted PL/SQL
data type.

• Declare a PL/SQL variable to hold department
information.

Example:Example:
DECLARE
TYPE dept_table_type IS TABLE OF

departments%ROWTYPE
INDEX BY BINARY_INTEGER;

dept_table dept_table_type;
-- Each element of dept_table is a record

Copyright © Oracle Corporation, 2001. All rights reserved.5-19

Example of INDEX BY Table of Records
SET SERVEROUTPUT ON
DECLARE

TYPE emp_table_type is table of
employees%ROWTYPE INDEX BY BINARY_INTEGER;

my_emp_table emp_table_type;
v_count NUMBER(3):= 104;

BEGIN
FOR i IN 100..v_count
LOOP

SELECT * INTO my_emp_table(i) FROM employees
WHERE employee_id = i;

END LOOP;
FOR i IN my_emp_table.FIRST..my_emp_table.LAST
LOOP

DBMS_OUTPUT.PUT_LINE(my_emp_table(i).last_name);
END LOOP;

END;

Copyright © Oracle Corporation, 2001. All rights reserved.5-20

Summary

In this lesson, you should have learned to:

• Define and reference PL/SQL variables of
composite data types:
– PL/SQL records
– INDEX BY tables

– INDEX BY table of records

• Define a PL/SQL record by using the %ROWTYPE
attribute

Copyright © Oracle Corporation, 2001. All rights reserved.5-21

Practice 5 Overview

This practice covers the following topics:
• Declaring INDEX BY tables

• Processing data by using INDEX BY tables

• Declaring a PL/SQL record

• Processing data by using a PL/SQL record

6
Copyright © Oracle Corporation, 2001. All rights reserved.

Writing Explicit Cursors

Copyright © Oracle Corporation, 2001. All rights reserved.6-2

ObjectivesObjectives

After completing this lesson, you should be able to
do the following:

• Distinguish between an implicit and an explicit
cursor

• Discuss when and why to use an explicit cursor

• Use a PL/SQL record variable

• Write a cursor FOR loop

After completing this lesson, you should be able to
do the following:

• Distinguish between an implicit and an explicit
cursor

• Discuss when and why to use an explicit cursor

• Use a PL/SQL record variable

• Write a cursor FOR loop

Copyright © Oracle Corporation, 2001. All rights reserved.6-3

About Cursors

Every SQL statement executed by the Oracle Server
has an individual cursor associated with it:

• Implicit cursors: Declared for all DML and PL/SQL
SELECT statements

• Explicit cursors: Declared and named by the
programmer

Copyright © Oracle Corporation, 2001. All rights reserved.6-4

Explicit Cursor FunctionsExplicit Cursor Functions

Active set

Cursor

Table

100 King AD_PRES
101 Kochhar AD_VP
102 De Haan AD_VP
. . .
. . .
. . .
139 Seo ST_CLERK
140 Patel ST_CLERK
. . .

Copyright © Oracle Corporation, 2001. All rights reserved.6-5

Controlling Explicit CursorsControlling Explicit Cursors

• Create a
named
SQL area

DECLAREDECLARE

• Identify
the active
set

OPENOPEN

• Load the
current
row into
variables

FETCHFETCH

• Test for
existing
rows

EMPTY?EMPTY?

• Return to
FETCH if
rows are
found

No

• Release
the active
set

CLOSECLOSE
Yes

Copyright © Oracle Corporation, 2001. All rights reserved.6-6

Controlling Explicit CursorsControlling Explicit Cursors

1. Open the cursor.

Cursor
pointer

1. Open the cursor

2. Fetch a row

3. Close the Cursor

Copyright © Oracle Corporation, 2001. All rights reserved.6-7

Controlling Explicit CursorsControlling Explicit Cursors

Cursor
pointer

2. Fetch a row using the cursor.

Continue until empty.

1. Open the cursor

2. Fetch a row

3. Close the Cursor

Copyright © Oracle Corporation, 2001. All rights reserved.6-8

Controlling Explicit CursorsControlling Explicit Cursors

Cursor
pointer

3. Close the cursor.

1. Open the cursor

2. Fetch a row

3. Close the Cursor

Copyright © Oracle Corporation, 2001. All rights reserved.6-9

Declaring the CursorDeclaring the Cursor

Syntax:

• Do not include the INTO clause in the cursor
declaration.

• If processing rows in a specific sequence is
required, use the ORDER BY clause in the query.

Syntax:

• Do not include the INTO clause in the cursor
declaration.

• If processing rows in a specific sequence is
required, use the ORDER BY clause in the query.

CURSOR cursor_name IS
select_statement;

Copyright © Oracle Corporation, 2001. All rights reserved.6-10

Declaring the CursorDeclaring the Cursor

Example:Example:

DECLARE
CURSOR emp_cursor IS

SELECT employee_id, last_name
FROM employees;

CURSOR dept_cursor IS
SELECT *
FROM departments
WHERE location_id = 170;

BEGIN
...

Copyright © Oracle Corporation, 2001. All rights reserved.6-11

Opening the CursorOpening the Cursor

Syntax:

• Open the cursor to execute the query and identify
the active set.

• If the query returns no rows, no exception is
raised.

• Use cursor attributes to test the outcome after a
fetch.

Syntax:

• Open the cursor to execute the query and identify
the active set.

• If the query returns no rows, no exception is
raised.

• Use cursor attributes to test the outcome after a
fetch.

OPEN cursor_name;

Copyright © Oracle Corporation, 2001. All rights reserved.6-12

Fetching Data from the CursorFetching Data from the Cursor

Syntax:

• Retrieve the current row values into variables.

• Include the same number of variables.

• Match each variable to correspond to the columns
positionally.

• Test to see whether the cursor contains rows.

Syntax:

• Retrieve the current row values into variables.

• Include the same number of variables.

• Match each variable to correspond to the columns
positionally.

• Test to see whether the cursor contains rows.

FETCH cursor_name INTO [variable1, variable2, ...]
| record_name];

Copyright © Oracle Corporation, 2001. All rights reserved.6-13

Fetching Data from the CursorFetching Data from the Cursor

Example: Example:

LOOP
FETCH emp_cursor INTO v_empno,v_ename;
EXIT WHEN ...;
...

-- Process the retrieved data
…

END LOOP;

Copyright © Oracle Corporation, 2001. All rights reserved.6-14

Closing the CursorClosing the Cursor

Syntax:

• Close the cursor after completing the processing
of the rows.

• Reopen the cursor, if required.

• Do not attempt to fetch data from a cursor after it
has been closed.

Syntax:

• Close the cursor after completing the processing
of the rows.

• Reopen the cursor, if required.

• Do not attempt to fetch data from a cursor after it
has been closed.

CLOSE cursor_name;

Copyright © Oracle Corporation, 2001. All rights reserved.6-15

Explicit Cursor AttributesExplicit Cursor Attributes

Obtain status information about a cursor.Obtain status information about a cursor.
Attribute Type Description

%ISOPEN Boolean Evaluates to TRUE if the cursor
is open

%NOTFOUND Boolean Evaluates to TRUE if the most
recent fetch does not return a row

%FOUND Boolean Evaluates to TRUE if the most
recent fetch returns a row;
complement of %NOTFOUND

%ROWCOUNT Number Evaluates to the total number of
rows returned so far

Copyright © Oracle Corporation, 2001. All rights reserved.6-16

The %ISOPEN AttributeTThe %ISOPEN Attribute

• Fetch rows only when the cursor is open.

• Use the %ISOPEN cursor attribute before
performing a fetch to test whether the cursor is
open.

Example:

• Fetch rows only when the cursor is open.

• Use the %ISOPEN cursor attribute before
performing a fetch to test whether the cursor is
open.

Example:

IF NOT emp_cursor%ISOPEN THEN
OPEN emp_cursor;

END IF;
LOOP
FETCH emp_cursor...

Copyright © Oracle Corporation, 2001. All rights reserved.6-17

Controlling Multiple FetchesControlling Multiple Fetches

• Process several rows from an explicit cursor using
a loop.

• Fetch a row with each iteration.

• Use explicit cursor attributes to test the success
of each fetch.

• Process several rows from an explicit cursor using
a loop.

• Fetch a row with each iteration.

• Use explicit cursor attributes to test the success
of each fetch.

Copyright © Oracle Corporation, 2001. All rights reserved.6-18

The %NOTFOUND
and %ROWCOUNT Attributes

The %NOTFOUND
and %ROWCOUNT Attributes

• Use the %ROWCOUNT cursor attribute to retrieve an
exact number of rows.

• Use the %NOTFOUND cursor attribute to determine
when to exit the loop.

• Use the %ROWCOUNT cursor attribute to retrieve an
exact number of rows.

• Use the %NOTFOUND cursor attribute to determine
when to exit the loop.

Copyright © Oracle Corporation, 2001. All rights reserved.6-20

ExampleExample

DECLARE
v_empno employees.employee_id%TYPE;
v_ename employees.last_name%TYPE;
CURSOR emp_cursor IS

SELECT employee_id, last_name
FROM employees;

BEGIN
OPEN emp_cursor;
LOOP

FETCH emp_cursor INTO v_empno, v_ename;
EXIT WHEN emp_cursor%ROWCOUNT > 10 OR

emp_cursor%NOTFOUND;
DBMS_OUTPUT.PUT_LINE (TO_CHAR(v_empno)

||' '|| v_ename);
END LOOP;
CLOSE emp_cursor;

END ;

Copyright © Oracle Corporation, 2001. All rights reserved.6-21

Cursors and RecordsCursors and Records

Process the rows of the active set by fetching values
into a PL/SQL RECORD.
Process the rows of the active set by fetching values
into a PL/SQL RECORD.
DECLARE
CURSOR emp_cursor IS

SELECT employee_id, last_name
FROM employees;

emp_record emp_cursor%ROWTYPE;
BEGIN
OPEN emp_cursor;
LOOP

FETCH emp_cursor INTO emp_record;
...

100 King

emp_record
employee_id last_name

Copyright © Oracle Corporation, 2001. All rights reserved.6-22

Syntax:

• The cursor FOR loop is a shortcut to process
explicit cursors.

• Implicit open, fetch, exit, and close occur.

• The record is implicitly declared.

Syntax:

• The cursor FOR loop is a shortcut to process
explicit cursors.

• Implicit open, fetch, exit, and close occur.

• The record is implicitly declared.

Cursor FOR LoopsCursor FOR Loops

FOR record_name IN cursor_name LOOP
statement1;
statement2;
. . .

END LOOP;

Copyright © Oracle Corporation, 2001. All rights reserved.6-23

Cursor FOR LoopsCursor FOR Loops

Print a list of the employees who work for the sales
department.
Print a list of the employees who work for the sales
department.

DECLARE
CURSOR emp_cursor IS

SELECT last_name, department_id
FROM employees;

BEGIN
FOR emp_record IN emp_cursor LOOP

-- implicit open and implicit fetch occur
IF emp_record.department_id = 80 THEN
...

END LOOP; -- implicit close occurs
END;
/

Copyright © Oracle Corporation, 2001. All rights reserved.6-24

Cursor FOR Loops Using SubqueriesCursor FOR Loops Using Subqueries

No need to declare the cursor.

Example:

No need to declare the cursor.

Example:

BEGIN
FOR emp_record IN (SELECT last_name, department_id

FROM employees) LOOP
-- implicit open and implicit fetch occur

IF emp_record.department_id = 80 THEN
...

END LOOP; -- implicit close occurs
END;

Copyright © Oracle Corporation, 2001. All rights reserved.6-26

SummarySummary

In this lesson you should have learned to:

• Distinguish cursor types:
– Implicit cursors: used for all DML statements and

single-row queries

– Explicit cursors: used for queries of zero, one, or
more rows

• Manipulate explicit cursors

• Evaluate the cursor status by using cursor
attributes

• Use cursor FOR loops

In this lesson you should have learned to:

• Distinguish cursor types:
– Implicit cursors: used for all DML statements and

single-row queries

– Explicit cursors: used for queries of zero, one, or
more rows

• Manipulate explicit cursors

• Evaluate the cursor status by using cursor
attributes

• Use cursor FOR loops

Copyright © Oracle Corporation, 2001. All rights reserved.6-27

Practice 6 OverviewPractice 6 Overview

This practice covers the following topics:

• Declaring and using explicit cursors to query rows
of a table

• Using a cursor FOR loop

• Applying cursor attributes to test the cursor status

This practice covers the following topics:

• Declaring and using explicit cursors to query rows
of a table

• Using a cursor FOR loop

• Applying cursor attributes to test the cursor status

7
Copyright © Oracle Corporation, 2001. All rights reserved.

Advanced Explicit Cursor Concepts

Copyright © Oracle Corporation, 2001. All rights reserved.7-2

Objectives

After completing this lesson, you should be able to
do the following:

• Write a cursor that uses parameters

• Determine when a FOR UPDATE clause in a cursor
is required

• Determine when to use the WHERE CURRENT OF
clause

• Write a cursor that uses a subquery

Copyright © Oracle Corporation, 2001. All rights reserved.7-3

Cursors with Parameters

Syntax:

• Pass parameter values to a cursor when the cursor
is opened and the query is executed.

• Open an explicit cursor several times with a
different active set each time.

CURSOR cursor_name
[(parameter_name datatype, ...)]

IS
select_statement;

OPEN cursor_name(parameter_value,.....) ;

Copyright © Oracle Corporation, 2001. All rights reserved.7-4

Cursors with Parameters

Pass the department number and job title to the WHERE
clause, in the cursor SELECT statement.

DECLARE
CURSOR emp_cursor
(p_deptno NUMBER, p_job VARCHAR2) IS

SELECT employee_id, last_name
FROM employees
WHERE department_id = p_deptno
AND job_id = p_job;

BEGIN
OPEN emp_cursor (80, 'SA_REP');
. . .
CLOSE emp_cursor;
OPEN emp_cursor (60, 'IT_PROG');
. . .

END;

Copyright © Oracle Corporation, 2001. All rights reserved.7-5

The FOR UPDATE Clause

Syntax:

• Use explicit locking to deny access for the
duration of a transaction.

• Lock the rows before the update or delete.

SELECT ...
FROM ...
FOR UPDATE [OF column_reference][NOWAIT];

Copyright © Oracle Corporation, 2001. All rights reserved.7-6

The FOR UPDATE Clause

Retrieve the employees who work in department 80
and update their salary.

DECLARE
CURSOR emp_cursor IS

SELECT employee_id, last_name, department_name
FROM employees,departments
WHERE employees.department_id =

departments.department_id
AND employees.department_id = 80
FOR UPDATE OF salary NOWAIT;

Copyright © Oracle Corporation, 2001. All rights reserved.7-7

The WHERE CURRENT OF Clause

Syntax:

• Use cursors to update or delete the current row.

• Include the FOR UPDATE clause in the cursor
query to lock the rows first.

• Use the WHERE CURRENT OF clause to reference
the current row from an explicit cursor.

WHERE CURRENT OF cursor ;

Copyright © Oracle Corporation, 2001. All rights reserved.7-8

TThe WHERE CURRENT OF Clause
DECLARE
CURSOR sal_cursor IS
SELECT e.department_id, employee_id, last_name, salary
FROM employees e, departments d
WHERE d.department_id = e.department_id
and d.department_id = 60
FOR UPDATE OF salary NOWAIT;
BEGIN
FOR emp_record IN sal_cursor
LOOP
IF emp_record.salary < 5000 THEN

UPDATE employees
SET salary = emp_record.salary * 1.10
WHERE CURRENT OF sal_cursor;

END IF;
END LOOP;
END;
/

Copyright © Oracle Corporation, 2001. All rights reserved.7-9

Cursors with Subqueries

DECLARE
CURSOR my_cursor IS

SELECT t1.department_id, t1.department_name,
t2.staff

FROM departments t1, (SELECT department_id,
COUNT(*) AS STAFF

FROM employees
GROUP BY department_id) t2

WHERE t1.department_id = t2.department_id
AND t2.staff >= 3;

...

Example:Example:

Copyright © Oracle Corporation, 2001. All rights reserved.7-10

Summary

In this lesson, you should have learned to:

• Return different active sets using cursors with
parameters.

• Define cursors with subqueries and correlated
subqueries.

• Manipulate explicit cursors with commands using
the:
– FOR UPDATE clause

– WHERE CURRENT OF clause

Copyright © Oracle Corporation, 2001. All rights reserved.7-11

Practice 7 Overview

This practice covers the following topics:

• Declaring and using explicit cursors with
parameters

• Using a FOR UPDATE cursor

8
Copyright © Oracle Corporation, 2001. All rights reserved.

Handling Exceptions

Copyright © Oracle Corporation, 2001. All rights reserved.8-2

Objectives

After completing this lesson, you should be able to
do the following:

• Define PL/SQL exceptions

• Recognize unhandled exceptions

• List and use different types of PL/SQL exception
handlers

• Trap unanticipated errors

• Describe the effect of exception propagation in
nested blocks

• Customize PL/SQL exception messages

Copyright © Oracle Corporation, 2001. All rights reserved.8-3

Handling Exceptions with PL/SQL

• An exception is an identifier in PL/SQL that is raised
during execution.

• How is it raised?
– An Oracle error occurs.

– You raise it explicitly.

• How do you handle it?
– Trap it with a handler.

– Propagate it to the calling environment.

Copyright © Oracle Corporation, 2001. All rights reserved.8-4

Handling Exceptions

Trap the exception

DECLARE

BEGIN

END;

Exception
is raised EXCEPTION

Exception
is trapped

Propagate the exception

DECLARE

BEGIN

END;

Exception
is raised

EXCEPTION

Exception
is not
trapped

Exception
propagates to calling
environment

Copyright © Oracle Corporation, 2001. All rights reserved.8-5

Exception Types

• Predefined Oracle Server

• Nonpredefined Oracle Server

• User-defined

} Implicitly
raised

Explicitly raised

Copyright © Oracle Corporation, 2001. All rights reserved.8-6

Trapping Exceptions

EXCEPTION
WHEN exception1 [OR exception2 . . .] THEN

statement1;
statement2;
. . .

[WHEN exception3 [OR exception4 . . .] THEN
statement1;
statement2;
. . .]

[WHEN OTHERS THEN
statement1;
statement2;
. . .]

Syntax:

Copyright © Oracle Corporation, 2001. All rights reserved.8-7

Trapping Exceptions Guidelines

• The EXCEPTION keyword starts exception-handling
section.

• Several exception handlers are allowed.

• Only one handler is processed before leaving the
block.

• WHEN OTHERS is the last clause.

Copyright © Oracle Corporation, 2001. All rights reserved.8-8

Trapping Predefined Oracle Server Errors

• Reference the standard name in the exception-
handling routine.

• Sample predefined exceptions:
– NO_DATA_FOUND
– TOO_MANY_ROWS
– INVALID_CURSOR
– ZERO_DIVIDE
– DUP_VAL_ON_INDEX

Copyright © Oracle Corporation, 2001. All rights reserved.8-11

Predefined Exceptions

BEGIN
. . .
EXCEPTION
WHEN NO_DATA_FOUND THEN

statement1;
statement2;

WHEN TOO_MANY_ROWS THEN
statement1;

WHEN OTHERS THEN
statement1;
statement2;
statement3;

END;

Syntax:

Copyright © Oracle Corporation, 2001. All rights reserved.8-12

Trapping Nonpredefined Oracle
Server Errors

Declarative section

Declare

Name the
exception

Associate

Code the PRAGMA
EXCEPTION_INIT

Exception-handling
section

Reference

Handle the raised
exception

Copyright © Oracle Corporation, 2001. All rights reserved.8-13

DEFINE p_deptno = 10
DECLARE

e_emps_remaining EXCEPTION;
PRAGMA EXCEPTION_INIT

(e_emps_remaining, -2292);
BEGIN

DELETE FROM departments
WHERE department_id = &p_deptno;
COMMIT;

EXCEPTION
WHEN e_emps_remaining THEN
DBMS_OUTPUT.PUT_LINE ('Cannot remove dept ' ||
TO_CHAR(&p_deptno) || '. Employees exist. ');

END;

Nonpredefined Error

Trap for Oracle server error number –2292, an
integrity constraint violation.

1

2

3

Copyright © Oracle Corporation, 2001. All rights reserved.8-14

Functions for Trapping Exceptions

• SQLCODE: Returns the numeric value for the
error code

• SQLERRM: Returns the message associated
with the error number

Copyright © Oracle Corporation, 2001. All rights reserved.8-15

Functions for Trapping Exceptions

DECLARE
v_error_code NUMBER;
v_error_message VARCHAR2(255);

BEGIN
...
EXCEPTION
...
WHEN OTHERS THEN

ROLLBACK;
v_error_code := SQLCODE ;
v_error_message := SQLERRM ;
INSERT INTO errors
VALUES(v_error_code, v_error_message);

END;

Example:

Copyright © Oracle Corporation, 2001. All rights reserved.8-16

Trapping User-Defined Exceptions

Declarative
section

Name the
exception.

Declare

Executable
section

Raise

Explicitly raise the
exception by using the
RAISE statement.

Exception-handling
section

Reference

Handle the raised
exception.

Copyright © Oracle Corporation, 2001. All rights reserved.8-17

User-Defined Exceptions

DECLARE
e_invalid_department EXCEPTION;

BEGIN
UPDATE departments
SET department_name = '&p_department_desc'
WHERE department_id = &p_department_number;
IF SQL%NOTFOUND THEN

RAISE e_invalid_department;
END IF;
COMMIT;

EXCEPTION
WHEN e_invalid_department THEN

DBMS_OUTPUT.PUT_LINE('No such department id.');
END;

Example:Example:

1

2

3

DEFINE p_department_desc = 'Information Technology '
DEFINE P_department_number = 300

Copyright © Oracle Corporation, 2001. All rights reserved.8-18

Calling Environments

iSQL*Plus Displays error number and message
to screen

Procedure Builder

Displays error number and message
to screen

Oracle Developer
Forms

Accesses error number and message
in a trigger by means of the
ERROR_CODE and ERROR_TEXT
packaged functions

Precompiler
application

Accesses exception number through
the SQLCA data structure

An enclosing
PL/SQL block

Traps exception in exception-
handling routine of enclosing block

Copyright © Oracle Corporation, 2001. All rights reserved.8-19

Propagating Exceptions

DECLARE
. . .
e_no_rows exception;
e_integrity exception;
PRAGMA EXCEPTION_INIT (e_integrity, -2292);

BEGIN
FOR c_record IN emp_cursor LOOP
BEGIN
SELECT ...
UPDATE ...
IF SQL%NOTFOUND THEN
RAISE e_no_rows;

END IF;
END;

END LOOP;
EXCEPTION
WHEN e_integrity THEN ...
WHEN e_no_rows THEN ...

END;

Subblocks can handle
an exception or pass
the exception to the
enclosing block.

Copyright © Oracle Corporation, 2001. All rights reserved.8-20

The RAISE_APPLICATION_ERROR
Procedure

Syntax:

• You can use this procedure to issue user-defined
error messages from stored subprograms.

• You can report errors to your application and
avoid returning unhandled exceptions.

raise_application_error (error_number,
message[, {TRUE | FALSE}]);

Copyright © Oracle Corporation, 2001. All rights reserved.8-21

The RAISE_APPLICATION_ERROR
Procedure

• Used in two different places:
– Executable section

– Exception section

• Returns error conditions to the user in a manner
consistent with other Oracle server errors

Copyright © Oracle Corporation, 2001. All rights reserved.8-22

RAISE_APPLICATION_ERROR

BEGIN
...

DELETE FROM employees
WHERE manager_id = v_mgr;

IF SQL%NOTFOUND THEN
RAISE_APPLICATION_ERROR(-20202,

'This is not a valid manager');
END IF;
...

Executable section:

Exception section:
...
EXCEPTION

WHEN NO_DATA_FOUND THEN
RAISE_APPLICATION_ERROR (-20201,
'Manager is not a valid employee.');

END;

Copyright © Oracle Corporation, 2001. All rights reserved.8-23

Summary

• Exception types:
– Predefined Oracle server error

– Nonpredefined Oracle server error

– User-defined error

• Exception trapping

• Exception handling:
– Trap the exception within the PL/SQL block.

– Propagate the exception.

In this lesson, you should have learned that: In this lesson, you should have learned that:

Copyright © Oracle Corporation, 2001. All rights reserved.8-24

Practice 8 Overview

This practice covers the following topics:

• Handling named exceptions

• Creating and invoking user-defined exceptions

9
Copyright © Oracle Corporation, 2001. All rights reserved.

Creating Procedures

9-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

• Distinguish anonymous PL/SQL blocks from
named PL/SQL blocks (subprograms)

• Describe subprograms

• List the benefits of using subprograms

• List the different environments from which
subprograms can be invoked

9-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:
• Describe PL/SQL blocks and subprograms
• Describe the uses of procedures
• Create procedures
• Differentiate between formal and actual parameters
• List the features of different parameter modes
• Create procedures with parameters
• Invoke a procedure
• Handle exceptions in procedures
• Remove a procedure

9-4 Copyright © Oracle Corporation, 2001. All rights reserved.

PL/SQL Program Constructs

or DECLARE

BEGIN

EXCEPTION

END;

<header> IS|AS

Tools Constructs

Anonymous blocks
Application procedures or

functions
Application packages

Application triggers

Object types

Database Server
Constructs

Anonymous blocks
Stored procedures or

functions
Stored packages

Database triggers

Object types

9-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Overview of Subprograms

A subprogram:

• Is a named PL/SQL block that can accept parameters
and be invoked from a calling environment

• Is of two types:
– A procedure that performs an action

– A function that computes a value

• Is based on standard PL/SQL block structure

• Provides modularity, reusability, extensibility,
and maintainability

• Provides easy maintenance, improved data security
and integrity, improved performance, and improved
code clarity

9-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Block Structure for Anonymous
PL/SQL Blocks

DECLARE (optional)
Declare PL/SQL objects to be used
within this block

BEGIN (mandatory)
Define the executable statements

EXCEPTION (optional)
Define the actions that take place if
an error or exception arises

END; (mandatory)

9-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Block Structure for PL/SQL Subprograms

<header>
IS | AS

Declaration section

BEGIN
Executable section

EXCEPTION (optional)

Exception section
END;

Subprogram Specification

Subprogram Body

9-8 Copyright © Oracle Corporation, 2001. All rights reserved.

PL/SQL Subprograms

----- --- --- ---
----- --- --- ---

----- --- --- ---
----- --- --- ---
----- --- --- ---

----- --- --- ---
----- --- --- ---

----- --- --- ---
----- --- --- ---
----- --- --- ---

xxx xxx xxx
xxx xxx xxx

xxx xxx xxx
xxx xxx xxx

xxx xxx xxx
xxx xxx xxx

Code repeated more than
once in a PL/SQL program

Subprogram P,
which contains the

repeated code

xxx xxx xxx
xxx xxx xxx

----- --- --- ---
----- --- --- ---

----- --- --- ---
----- --- --- ---
----- --- --- ---

----- --- --- ---
----- --- --- ---

----- --- --- ---

PL/SQL program invoking
the subprogram at multiple
locations

P

P

P

9-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Benefits of Subprograms

• Easy maintenance

• Improved data security and integrity

• Improved performance

• Improved code clarity

9-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Developing Subprograms by Using
iSQL*Plus

2 3

4

1

9-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Invoking Stored Procedures
and Functions

xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv

LOG_EXECUTION
procedure

Scott

xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv

Scott

Oracle
Forms

Developer

Oracle
Discoverer

Oracle
Portal

1

2

3

4

9-12 Copyright © Oracle Corporation, 2001. All rights reserved.

What Is a Procedure?

• A procedure is a type of subprogram that performs
an action.

• A procedure can be stored in the database, as a
schema object, for repeated execution.

9-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Syntax for Creating Procedures

CREATE [OR REPLACE] PROCEDURE procedure_name
[(parameter1 [mode1] datatype1,
parameter2 [mode2] datatype2,
. . .)]

IS|AS
PL/SQL Block;

• The REPLACE option indicates that if the procedure
exists, it will be dropped and replaced with the
new version created by the statement.

• PL/SQL block starts with either BEGIN or the
declaration of local variables and ends with either
END or END procedure_name.

9-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Developing Procedures

1
Editor

Code to create
procedure

file.sql

iSQL*Plus
2 Load and execute file.sql

Oracle Source code

Compile

P code

Use SHOW ERRORS
to view
compilation errors

Procedure
created

Execute 3

9-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Formal Versus Actual ParametersFormal Versus Actual Parameters

• Formal parameters: variables declared in the
parameter list of a subprogram specification

Example:
CREATE PROCEDURE raise_sal(p_id NUMBER, p_amount NUMBER)
...
END raise_sal;

• Actual parameters: variables or expressions
referenced in the parameter list of a subprogram call

Example:
raise_sal(v_id, 2000)

• Formal parameters: variables declared in the
parameter list of a subprogram specification

Example:
CREATE PROCEDURE raise_sal(p_id NUMBER, p_amount NUMBER)
...
END raise_sal;

• Actual parameters: variables or expressions
referenced in the parameter list of a subprogram call

Example:
raise_sal(v_id, 2000)

9-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Procedural Parameter Modes

Calling
environment

Procedure

(DECLARE)

BEGIN

EXCEPTION

END;

IN parameter

OUT parameter

IN OUT parameter

9-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating Procedures with Parameters

Can be assigned a default
value

Actual parameter can be a
literal, expression,
constant, or initialized
variable

Initialized variableUninitialized
variable

Formal parameter acts as
a constant

Passed into
subprogram;
returned to calling
environment

Returned to
calling
environment

Value is passed into
subprogram

Default mode

IN OUTOUTIN
Must be specified

Must be a variable

Must be specified

Must be a variable

Cannot be
assigned
a default value

Cannot be
assigned
a default value

9-18 Copyright © Oracle Corporation, 2001. All rights reserved.

IN Parameters: Example

p_id176

CREATE OR REPLACE PROCEDURE raise_salary
(p_id IN employees.employee_id%TYPE)

IS
BEGIN
UPDATE employees
SET salary = salary * 1.10
WHERE employee_id = p_id;

END raise_salary;
/

9-19 Copyright © Oracle Corporation, 2001. All rights reserved.

OUT Parameters: Example

Calling environment QUERY_EMP procedure

p_id

p_name

p_salary

p_comm

171

SMITH

7400

0.15

9-20 Copyright © Oracle Corporation, 2001. All rights reserved.

OUT Parameters: ExampleOUT Parameters: Example

CREATE OR REPLACE PROCEDURE query_emp
(p_id IN employees.employee_id%TYPE,
p_name OUT employees.last_name%TYPE,
p_salary OUT employees.salary%TYPE,
p_comm OUT employees.commission_pct%TYPE)

IS
BEGIN
SELECT last_name, salary, commission_pct
INTO p_name, p_salary, p_comm
FROM employees
WHERE employee_id = p_id;

END query_emp;
/

emp_query.sqlemp_query.sql

9-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Viewing OUT Parameters

• Load and run the emp_query.sql script file to
create the QUERY_EMP procedure.

• Declare host variables, execute the QUERY_EMP
procedure, and print the value of the global G_NAME
variable.
VARIABLE g_name VARCHAR2(25)
VARIABLE g_sal NUMBER
VARIABLE g_comm NUMBER

EXECUTE query_emp(171, :g_name, :g_sal, :g_comm)

PRINT g_name

9-22 Copyright © Oracle Corporation, 2001. All rights reserved.

IN OUT Parameters

Calling environment FORMAT_PHONE procedure

p_phone_no'(800)633-0575' '8006330575'

CREATE OR REPLACE PROCEDURE format_phone
(p_phone_no IN OUT VARCHAR2)

IS
BEGIN
p_phone_no := '(' || SUBSTR(p_phone_no,1,3) ||

')' || SUBSTR(p_phone_no,4,3) ||
'-' || SUBSTR(p_phone_no,7);

END format_phone;
/

9-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Viewing IN OUT Parameters

VARIABLE g_phone_no VARCHAR2(15)
BEGIN
:g_phone_no := '8006330575';

END;
/
PRINT g_phone_no
EXECUTE format_phone (:g_phone_no)
PRINT g_phone_no

9-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Methods for Passing Parameters

• Positional: List actual parameters in the same
order as formal parameters.

• Named: List actual parameters in arbitrary order
by associating each with its corresponding formal
parameter.

• Combination: List some of the actual parameters
as positional and some as named.

9-25 Copyright © Oracle Corporation, 2001. All rights reserved.

DEFAULT Option for Parameters

CREATE OR REPLACE PROCEDURE add_dept
(p_name IN departments.department_name%TYPE

DEFAULT 'unknown',
p_loc IN departments.location_id%TYPE

DEFAULT 1700)
IS
BEGIN
INSERT INTO departments(department_id,

department_name, location_id)
VALUES (departments_seq.NEXTVAL, p_name, p_loc);

END add_dept;
/

9-26 Copyright © Oracle Corporation, 2001. All rights reserved.

Examples of Passing Parameters

BEGIN
add_dept;
add_dept ('TRAINING', 2500);
add_dept (p_loc => 2400, p_name =>'EDUCATION');
add_dept (p_loc => 1200) ;

END;
/
SELECT department_id, department_name, location_id
FROM departments;

…

9-27 Copyright © Oracle Corporation, 2001. All rights reserved.

Declaring Subprograms

CREATE OR REPLACE PROCEDURE leave_emp2
(p_id IN employees.employee_id%TYPE)

IS
PROCEDURE log_exec
IS
BEGIN

INSERT INTO log_table (user_id, log_date)
VALUES (USER, SYSDATE);

END log_exec;
BEGIN
DELETE FROM employees
WHERE employee_id = p_id;
log_exec;

END leave_emp2;
/

leave_emp2.sqlleave_emp2.sql

9-28 Copyright © Oracle Corporation, 2001. All rights reserved.

Invoking a Procedure from an Anonymous
PL/SQL Block

Invoking a Procedure from an Anonymous
PL/SQL Block

DECLARE
v_id NUMBER := 163;

BEGIN
raise_salary(v_id); --invoke procedure
COMMIT;

...
END;

9-29 Copyright © Oracle Corporation, 2001. All rights reserved.

Invoking a Procedure from Another
Procedure

Invoking a Procedure from Another
Procedure

CREATE OR REPLACE PROCEDURE process_emps
IS

CURSOR emp_cursor IS
SELECT employee_id
FROM employees;

BEGIN
FOR emp_rec IN emp_cursor
LOOP
raise_salary(emp_rec.employee_id);

END LOOP;
COMMIT;

END process_emps;
/

process_emps.sqlprocess_emps.sql

9-30 Copyright © Oracle Corporation, 2001. All rights reserved.

Handled Exceptions

PROCEDURE
PROC2 ...
IS
...
BEGIN
...
EXCEPTION
...
END PROC2;

Called procedure

Calling procedure

PROCEDURE
PROC1 ...
IS
...
BEGIN
...
PROC2(arg1);
...
EXCEPTION
...
END PROC1;

Exception raised

Exception handled

Control returns to
calling procedure

9-31 Copyright © Oracle Corporation, 2001. All rights reserved.

CREATE PROCEDURE p1_ins_loc(p_lid NUMBER, p_city VARCHAR2)
IS
v_city VARCHAR2(30); v_dname VARCHAR2(30);
BEGIN
DBMS_OUTPUT.PUT_LINE('Main Procedure p1_ins_loc');
INSERT INTO locations (location_id, city) VALUES (p_lid, p_city);
SELECT city INTO v_city FROM locations WHERE location_id = p_lid;
DBMS_OUTPUT.PUT_LINE('Inserted city '||v_city);
DBMS_OUTPUT.PUT_LINE('Invoking the procedure p2_ins_dept ...');
p2_ins_dept(p_lid);
EXCEPTION
WHEN NO_DATA_FOUND THEN
DBMS_OUTPUT.PUT_LINE('No such dept/loc for any employee');

END;

Handled Exceptions
CREATE PROCEDURE p2_ins_dept(p_locid NUMBER) IS
v_did NUMBER(4);

BEGIN
DBMS_OUTPUT.PUT_LINE('Procedure p2_ins_dept started');
INSERT INTO departments VALUES (5, 'Dept 5', 145, p_locid);
SELECT department_id INTO v_did FROM employees
WHERE employee_id = 999;

END;

9-32 Copyright © Oracle Corporation, 2001. All rights reserved.

Unhandled Exceptions

PROCEDURE
PROC2 ...
IS
...
BEGIN
...
EXCEPTION
...
END PROC2;

Called procedure

Exception raised

PROCEDURE
PROC1 ...
IS
...
BEGIN
...
PROC2(arg1);
...
EXCEPTION
...
END PROC1;

Calling procedure

Exception unhandled

Control returned to
exception section of
calling procedure

9-33 Copyright © Oracle Corporation, 2001. All rights reserved.

Unhandled Exceptions
CREATE PROCEDURE p2_noexcep(p_locid NUMBER) IS
v_did NUMBER(4);

BEGIN
DBMS_OUTPUT.PUT_LINE('Procedure p2_noexcep started');
INSERT INTO departments VALUES (6, 'Dept 6', 145, p_locid);
SELECT department_id INTO v_did FROM employees
WHERE employee_id = 999;

END;

CREATE PROCEDURE p1_noexcep(p_lid NUMBER, p_city VARCHAR2)
IS
v_city VARCHAR2(30); v_dname VARCHAR2(30);

BEGIN
DBMS_OUTPUT.PUT_LINE(' Main Procedure p1_noexcep');
INSERT INTO locations (location_id, city) VALUES (p_lid, p_city);
SELECT city INTO v_city FROM locations WHERE location_id = p_lid;
DBMS_OUTPUT.PUT_LINE('Inserted new city '||v_city);
DBMS_OUTPUT.PUT_LINE('Invoking the procedure p2_noexcep ...');
p2_noexcep(p_lid);

END;

9-34 Copyright © Oracle Corporation, 2001. All rights reserved.

Removing ProceduresRemoving Procedures

Drop a procedure stored in the database.Drop a procedure stored in the database.

Syntax:

Example:

Syntax:

Example:

DROP PROCEDURE procedure_name

DROP PROCEDURE raise_salary;

9-35 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

In this lesson, you should have learned that:
• A procedure is a subprogram that performs an

action.
• You create procedures by using the CREATE

PROCEDURE command.
• You can compile and save a procedure in the

database.
• Parameters are used to pass data from the calling

environment to the procedure.
• There are three parameter modes: IN, OUT, and IN

OUT.

9-36 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

• Local subprograms are programs that are defined
within the declaration section of another program.

• Procedures can be invoked from any tool or
language that supports PL/SQL.

• You should be aware of the effect of handled and
unhandled exceptions on transactions and calling
procedures.

• You can remove procedures from the database by
using the DROP PROCEDURE command.

• Procedures can serve as building blocks for an
application.

9-37 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 9 Overview

This practice covers the following topics:

• Creating stored procedures to:
– Insert new rows into a table, using the supplied

parameter values
– Update data in a table for rows matching with the

supplied parameter values
– Delete rows from a table that match the supplied

parameter values
– Query a table and retrieve data based on supplied

parameter values

• Handling exceptions in procedures

• Compiling and invoking procedures

10
Copyright © Oracle Corporation, 2001. All rights reserved.

Creating Functions

10-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

• Describe the uses of functions

• Create stored functions

• Invoke a function

• Remove a function

• Differentiate between a procedure and a function

10-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Overview of Stored Functions

• A function is a named PL/SQL block that returns
a value.

• A function can be stored in the database as a
schema object for repeated execution.

• A function is called as part of an expression.

10-4 Copyright © Oracle Corporation, 2001. All rights reserved.

CREATE [OR REPLACE] FUNCTION function_name
[(parameter1 [mode1] datatype1,
parameter2 [mode2] datatype2,
. . .)]

RETURN datatype
IS|AS
PL/SQL Block;

The PL/SQL block must have at least one RETURN
statement.

Syntax for Creating Functions

10-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a Function

Invoke 3

1
Editor

Code to create
function

file.sql

iSQL*Plus
2 Load and execute file.sql

Oracle Source code

Compile

P code Function
created

10-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a Stored Function
by Using iSQL*Plus

1. Enter the text of the CREATE FUNCTION statement
in an editor and save it as a SQL script file.

2. Run the script file to store the source code and
compile the function.

3. Use SHOW ERRORS to see compilation errors.

4. When successfully compiled, invoke the function.

10-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a Stored Function by Using
iSQL*Plus: Example

CREATE OR REPLACE FUNCTION get_sal
(p_id IN employees.employee_id%TYPE)
RETURN NUMBER

IS
v_salary employees.salary%TYPE :=0;

BEGIN
SELECT salary
INTO v_salary
FROM employees
WHERE employee_id = p_id;
RETURN v_salary;

END get_sal;
/

get_salary.sql

10-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Executing Functions

• Invoke a function as part of a PL/SQL expression.

• Create a variable to hold the returned value.

• Execute the function. The variable will be
populated by the value returned through a RETURN
statement.

10-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Executing Functions: Example

1. Load and run the get_salary.sql file to create the function

GET_SAL function

p_id

RETURN v_salary

117

Calling environment

2

3

4

VARIABLE g_salary NUMBER

EXECUTE :g_salary := get_sal(117)

PRINT g_salary

10-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Advantages of User-Defined Functions
in SQL Expressions

• Extend SQL where activities are too complex, too
awkward, or unavailable with SQL

• Can increase efficiency when used in the WHERE
clause to filter data, as opposed to filtering the
data in the application

• Can manipulate character strings

10-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Invoking Functions in SQL Expressions:
Example

Invoking Functions in SQL Expressions:
Example

CREATE OR REPLACE FUNCTION tax(p_value IN NUMBER)
RETURN NUMBER IS
BEGIN

RETURN (p_value * 0.08);
END tax;
/
SELECT employee_id, last_name, salary, tax(salary)
FROM employees
WHERE department_id = 100;

10-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Locations to Call User-Defined Functions

• Select list of a SELECT command

• Condition of the WHERE and HAVING clauses

• CONNECT BY, START WITH, ORDER BY, and GROUP
BY clauses

• VALUES clause of the INSERT command

• SET clause of the UPDATE command

10-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Restrictions on Calling Functions from
SQL Expressions

To be callable from SQL expressions, a user-defined
function must:

• Be a stored function
• Accept only IN parameters

• Accept only valid SQL data types, not PL/SQL
specific types, as parameters

• Return data types that are valid SQL data types,
not PL/SQL specific types

10-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Restrictions on Calling Functions from
SQL Expressions

• Functions called from SQL expressions cannot
contain DML statements.

• Functions called from UPDATE/DELETE statements
on a table T cannot contain DML on the same table
T.

• Functions called from an UPDATE or a DELETE
statement on a table T cannot query the same table.

• Functions called from SQL statements cannot
contain statements that end the transactions.

• Calls to subprograms that break the previous
restriction are not allowed in the function.

10-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Restrictions on Calling from SQL

CREATE OR REPLACE FUNCTION dml_call_sql (p_sal NUMBER)
RETURN NUMBER IS

BEGIN
INSERT INTO employees(employee_id, last_name, email,

hire_date, job_id, salary)
VALUES(1, 'employee 1', 'emp1@company.com',

SYSDATE, 'SA_MAN', 1000);
RETURN (p_sal + 100);

END;
/

UPDATE employees SET salary = dml_call_sql(2000)
WHERE employee_id = 170;

10-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Removing FunctionsRemoving Functions

Drop a stored function.Drop a stored function.

DROP FUNCTION function_name
Syntax:

Example:

Syntax:

Example:

DROP FUNCTION get_sal;

• All the privileges granted on a function are revoked
when the function is dropped.

• The CREATE OR REPLACE syntax is equivalent to
dropping a function and recreating it. Privileges
granted on the function remain the same when this
syntax is used.

• All the privileges granted on a function are revoked
when the function is dropped.

• The CREATE OR REPLACE syntax is equivalent to
dropping a function and recreating it. Privileges
granted on the function remain the same when this
syntax is used.

10-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Procedure or Function?

Procedure

(DECLARE)

BEGIN

EXCEPTION

END;

IN parameter

OUT parameter

IN OUT parameter

Calling
environment

Calling
environment

Function

(DECLARE)

BEGIN

EXCEPTION

END;

IN parameter

10-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Comparing Procedures
and Functions

Comparing Procedures
and Functions

Procedures

Execute as a PL/SQL
statement

Do not contain RETURN
clause in the header

Can return none, one,
or many values

Can contain a RETURN
statement

Functions

Invoke as part of an
expression
Must contain a RETURN
clause in the header

Must return a single value

Must contain at least one
RETURN statement

10-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Benefits of Stored
Procedures and Functions

• Improved performance

• Easy maintenance

• Improved data security and integrity

• Improved code clarity

10-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

In this lesson, you should have learned that:
• A function is a named PL/SQL block that must

return a value.
• A function is created by using the CREATE

FUNCTION syntax.
• A function is invoked as part of an expression.
• A function stored in the database can be called in

SQL statements.
• A function can be removed from the database by

using the DROP FUNCTION syntax.
• Generally, you use a procedure to perform an

action and a function to compute a value.

10-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 10 Overview

This practice covers the following topics:

• Creating stored functions
– To query a database table and return specific

values

– To be used in a SQL statement

– To insert a new row, with specified parameter
values, into a database table

– Using default parameter values

• Invoking a stored function from a SQL statement

• Invoking a stored function from a stored
procedure

11
Copyright © Oracle Corporation, 2001. All rights reserved.

Managing Subprograms

11-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

• Contrast system privileges with object privileges

• Contrast invokers rights with definers rights

• Identify views in the data dictionary to manage
stored objects

• Describe how to debug subprograms by using the
DBMS_OUTPUT package

11-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Required Privileges

CREATE (ANY) PROCEDURE
ALTER ANY PROCEDURE
DROP ANY PROCEDURE
EXECUTE ANY PROCEDURE

DBA grants

System privileges

Object privileges
Owner grants

EXECUTE

To be able to refer and access objects from a different
schema in a subprogram, you must be granted access to
the referred objects explicitly, not through a role.

11-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Granting Access to Data

GRANT EXECUTE
ON query_emp
TO green;
Grant Succeeded.

Indirect access:Indirect access:
Green

SCOTT.QUERY_EMP

SELECT

The procedure executes with the privileges of the
owner (default).
The procedure executes with the privileges of the
owner (default).

GRANT SELECT
ON employees
TO scott;
Grant Succeeded.

Direct access:Direct access:
Scott

EMPLOYEES

11-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Using Invoker's-Rights

The procedure executes with the privileges of the user.The procedure executes with the privileges of the user.

SCOTT.SCOTT.
QUERY_EMPLOYEEQUERY_EMPLOYEE

ScottScott EMPLOYEES

GreenGreen
EMPLOYEESEMPLOYEES

CREATE PROCEDURE query_employee
(p_id IN employees.employee_id%TYPE,
p_name OUT employees.last_name%TYPE,
p_salary OUT employees.salary%TYPE,
p_comm OUT
employees.commission_pct%TYPE)

AUTHID CURRENT_USER
IS
BEGIN
SELECT last_name, salary,

commission_pct
INTO p_name, p_salary, p_comm
FROM employees
WHERE employee_id=p_id;

END query_employee;
/

11-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Managing Stored PL/SQL ObjectsManaging Stored PL/SQL Objects

Data dictionaryData dictionary

Compile
errors

General
information Source code

Debug
information

P-codeParameters

EditorEditor

DESCRIBE ...DESCRIBE ...

DBMS_OUTPUT

11-7 Copyright © Oracle Corporation, 2001. All rights reserved.

USER_OBJECTS

Column

OBJECT_NAME

OBJECT_ID

OBJECT_TYPE

CREATED

LAST_DDL_TIME

TIMESTAMP

STATUS

Column Description

Name of the object

Internal identifier for the object

Type of object, for example, TABLE,
PROCEDURE, FUNCTION, PACKAGE, PACKAGE
BODY, TRIGGER

Date when the object was created

Date when the object was last modified

Date and time when the object was last
recompiled

VALID or INVALID

*Abridged column list*Abridged column list

11-8 Copyright © Oracle Corporation, 2001. All rights reserved.

List All Procedures and Functions

SELECT object_name, object_type
FROM user_objects
WHERE object_type in ('PROCEDURE','FUNCTION')
ORDER BY object_name;

…

11-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Column

NAME

TYPE

LINE

TEXT

Column Description

Name of the object

Type of object, for example, PROCEDURE,
FUNCTION, PACKAGE, PACKAGE BODY

Line number of the source code

Text of the source code line

USER_SOURCE Data Dictionary View

11-10 Copyright © Oracle Corporation, 2001. All rights reserved.

List the Code of Procedures
and Functions

SELECT text
FROM user_source
WHERE name = 'QUERY_EMPLOYEE'
ORDER BY line;

11-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Column

NAME

TYPE

SEQUENCE

LINE

POSITION

TEXT

Column Description

Name of the object

Type of object, for example, PROCEDURE,
FUNCTION, PACKAGE, PACKAGE BODY, TRIGGER

Sequence number, for ordering

Line number of the source code at which the
error occurs

Position in the line at which the error occurs

Text of the error message

USER_ERRORS

11-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Detecting Compilation Errors: Example

CREATE OR REPLACE PROCEDURE log_execution
IS
BEGIN
INPUT INTO log_table (user_id, log_date)

-- wrong
VALUES (USER, SYSDATE);
END;
/

11-13 Copyright © Oracle Corporation, 2001. All rights reserved.

List Compilation Errors by Using
USER_ERRORS

SELECT line || '/' || position POS, text
FROM user_errors
WHERE name = 'LOG_EXECUTION'
ORDER BY line;

11-14 Copyright © Oracle Corporation, 2001. All rights reserved.

List Compilation Errors by Using
SHOW ERRORS

SHOW ERRORS PROCEDURE log_execution

11-15 Copyright © Oracle Corporation, 2001. All rights reserved.

DESCRIBE in iSQL*Plus

DESCRIBE query_employee
DESCRIBE add_dept
DESCRIBE tax

11-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Debugging PL/SQL Program Units

• The DBMS_OUTPUT package:
– Accumulates information into a buffer

– Allows retrieval of the information from the buffer

• Autonomous procedure calls (for example, writing
the output to a log table)

• Software that uses DBMS_DEBUG
– Procedure Builder

– Third-party debugging software

11-17 Copyright © Oracle Corporation, 2001. All rights reserved.

USER_SOURCE

USER_ERRORS

Summary

Compile

P-code

Source
code

Compile
errors

ScottScott

GreenGreen

PrivilegesPrivileges

11-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

Execute

Debug
information

11-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 11 Overview

This practice covers the following topics:

• Re-creating the source file for a procedure

• Re-creating the source file for a function

12
Copyright © Oracle Corporation, 2001. All rights reserved.

Creating Packages

12-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

• Describe packages and list their possible
components

• Create a package to group together related
variables, cursors, constants, exceptions,
procedures, and functions

• Designate a package construct as either public or
private

• Invoke a package construct

• Describe a use for a bodiless package

12-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Overview of Packages

Packages:

• Group logically related PL/SQL types, items, and
subprograms

• Consist of two parts:

– Specification

– Body

• Cannot be invoked, parameterized, or nested

• Allow the Oracle server to read multiple objects
into memory at once

12-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Components of a Package

Procedure A
declaration

Procedure A
definition

Procedure B
definition

Public variable

Private variable

Public procedure

Private procedure

Public procedure

Local variable

Package
specification

Package
body

12-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Referencing Package Objects

Package
specification

Package
body

Procedure A
declaration

Procedure B
definition

Procedure A
definition

12-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Execute

Developing a Package

iSQL*Plus

Code
Editor

Load and run the file.sql2

Source code

P code

Compile

Oracle

1

12-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Developing a Package

• Saving the text of the CREATE PACKAGE statement
in two different SQL files facilitates later
modifications to the package.

• A package specification can exist without a
package body, but a package body cannot exist
without a package specification.

12-8 Copyright © Oracle Corporation, 2001. All rights reserved.

CREATE [OR REPLACE] PACKAGE package_name
IS|AS

public type and item declarations
subprogram specifications

END package_name;

Creating the Package Specification

Syntax:Syntax:

• The REPLACE option drops and recreates the
package specification.

• Variables declared in the package specification are
initialized to NULL by default.

• All the constructs declared in a package
specification are visible to users who are granted
privileges on the package.

12-9 Copyright © Oracle Corporation, 2001. All rights reserved.

COMM_PACKAGE package

G_COMM

Package
specification

1

Declaring Public Constructs

RESET_COMM
procedure
declaration

2

12-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a Package Specification:
Example

CREATE OR REPLACE PACKAGE comm_package IS
g_comm NUMBER := 0.10; --initialized to 0.10
PROCEDURE reset_comm
(p_comm IN NUMBER);

END comm_package;
/

• G_COMM is a global variable and is initialized to 0.10.

• RESET_COMM is a public procedure that is
implemented in the package body.

12-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating the Package Body

Syntax:

CREATE [OR REPLACE] PACKAGE BODY package_name
IS|AS

private type and item declarations
subprogram bodies

END package_name;

• The REPLACE option drops and recreates the
package body.

• Identifiers defined only in the package body are
private constructs. These are not visible outside
the package body.

• All private constructs must be declared before
they are used in the public constructs.

12-12 Copyright © Oracle Corporation, 2001. All rights reserved.

RESET_COMM
procedure declaration

VALIDATE_COMM
function definition

Package
specification

Package
body

1

3

2
RESET_COMM
procedure definition

COMM_PACKAGE package

Public and Private Constructs

G_COMM

2

12-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a Package Body: Example

CREATE OR REPLACE PACKAGE BODY comm_package
IS

FUNCTION validate_comm (p_comm IN NUMBER)
RETURN BOOLEAN

IS
v_max_comm NUMBER;

BEGIN
SELECT MAX(commission_pct)
INTO v_max_comm
FROM employees;
IF p_comm > v_max_comm THEN RETURN(FALSE);
ELSE RETURN(TRUE);
END IF;

END validate_comm;
...

comm_pack.sql

12-14 Copyright © Oracle Corporation, 2001. All rights reserved.

PROCEDURE reset_comm (p_comm IN NUMBER)
IS
BEGIN
IF validate_comm(p_comm)
THEN g_comm:=p_comm; --reset global variable
ELSE
RAISE_APPLICATION_ERROR(-20210,'Invalid commission');
END IF;

END reset_comm;
END comm_package;
/

Creating a Package Body: Example

comm_pack.sql

12-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Invoking Package Constructs

Example 1: Invoke a function from a procedure within
the same package.

CREATE OR REPLACE PACKAGE BODY comm_package IS
. . .

PROCEDURE reset_comm
(p_comm IN NUMBER)
IS
BEGIN
IF validate_comm(p_comm)
THEN g_comm := p_comm;
ELSE

RAISE_APPLICATION_ERROR
(-20210, 'Invalid commission');

END IF;
END reset_comm;
END comm_package;

12-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Invoking Package Constructs

Example 2: Invoke a package procedure from iSQL*Plus.

Example 3: Invoke a package procedure in a different
schema.

Example 4: Invoke a package procedure in a remote
database.

EXECUTE comm_package.reset_comm(0.15)

EXECUTE scott.comm_package.reset_comm(0.15)

EXECUTE comm_package.reset_comm@ny(0.15)

12-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Declaring a Bodiless Package

CREATE OR REPLACE PACKAGE global_consts IS
mile_2_kilo CONSTANT NUMBER := 1.6093;
kilo_2_mile CONSTANT NUMBER := 0.6214;
yard_2_meter CONSTANT NUMBER := 0.9144;
meter_2_yard CONSTANT NUMBER := 1.0936;

END global_consts;
/

EXECUTE DBMS_OUTPUT.PUT_LINE('20 miles = '||20*
global_consts.mile_2_kilo||' km')

12-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Referencing a Public Variable from
a Stand-Alone Procedure

Referencing a Public Variable from
a Stand-Alone Procedure

Example:Example:
CREATE OR REPLACE PROCEDURE meter_to_yard

(p_meter IN NUMBER, p_yard OUT NUMBER)
IS
BEGIN
p_yard := p_meter * global_consts.meter_2_yard;

END meter_to_yard;
/
VARIABLE yard NUMBER
EXECUTE meter_to_yard (1, :yard)
PRINT yard

12-19 Copyright © Oracle Corporation, 2001. All rights reserved.

To remove the package specification and the body,
use the following syntax:

To remove the package body, use the following syntax:

DROP PACKAGE package_name;

Removing Packages

DROP PACKAGE BODY package_name;

12-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Guidelines for Developing Packages

• Construct packages for general use.

• Define the package specification before the body.

• The package specification should contain only
those constructs that you want to be public.

• Place items in the declaration part of the package
body when you must maintain them throughout
a session or across transactions.

• Changes to the package specification require
recompilation of each referencing subprogram.

• The package specification should contain as few
constructs as possible.

12-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Advantages of Packages

• Modularity: Encapsulate related constructs.

• Easier application design: Code and compile
specification and body separately.

• Hiding information:

– Only the declarations in the package
specification are visible and accessible to
applications.

– Private constructs in the package body are
hidden and inaccessible.

– All coding is hidden in the package body.

12-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Advantages of Packages

• Added functionality: Persistency of variables
and cursors

• Better performance:

– The entire package is loaded into memory
when the package is first referenced.

– There is only one copy in memory for all users.

– The dependency hierarchy is simplified.

• Overloading: Multiple subprograms of the
same name

12-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

In this lesson, you should have learned how to:

• Improve organization, management, security, and
performance by using packages

• Group related procedures and functions together
in a package

• Change a package body without affecting a
package specification

• Grant security access to the entire package

12-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

In this lesson, you should have learned how to:

• Hide the source code from users

• Load the entire package into memory on the
first call

• Reduce disk access for subsequent calls

• Provide identifiers for the user session

12-25 Copyright © Oracle Corporation, 2001. All rights reserved.

Command

CREATE [OR REPLACE] PACKAGE

CREATE [OR REPLACE] PACKAGE
BODY

DROP PACKAGE

DROP PACKAGE BODY

Task

Create (or modify) an existing
package specification

Create (or modify) an existing
package body

Remove both the package
specification and the package body

Remove the package body only

SummarySummary

12-26 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 12 Overview

This practice covers the following topics:

• Creating packages

• Invoking package program units

13
Copyright © Oracle Corporation, 2001. All rights reserved.

More Package Concepts

13-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

• Write packages that use the overloading feature

• Describe errors with mutually referential
subprograms

• Initialize variables with a one-time-only procedure

• Identify persistent states

13-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Overloading

• Enables you to use the same name for different
subprograms inside a PL/SQL block, a
subprogram, or a package

• Requires the formal parameters of the
subprograms to differ in number, order, or data
type family

• Enables you to build more flexibility because a
user or application is not restricted by the specific
data type or number of formal parameters

Note: Only local or packaged subprograms can be
overloaded. You cannot overload stand-alone
subprograms.

13-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Overloading: ExampleOverloading: Example

CREATE OR REPLACE PACKAGE over_pack
IS
PROCEDURE add_dept
(p_deptno IN departments.department_id%TYPE,
p_name IN departments.department_name%TYPE

DEFAULT 'unknown',
p_loc IN departments.location_id%TYPE DEFAULT 0);

PROCEDURE add_dept
(p_name IN departments.department_name%TYPE

DEFAULT 'unknown',
p_loc IN departments.location_id%TYPE DEFAULT 0);

END over_pack;
/

over_pack.sql

13-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Overloading: ExampleOverloading: Example

CREATE OR REPLACE PACKAGE BODY over_pack IS
PROCEDURE add_dept
(p_deptno IN departments.department_id%TYPE,
p_name IN departments.department_name%TYPE DEFAULT 'unknown',
p_loc IN departments.location_id%TYPE DEFAULT 0)

IS
BEGIN
INSERT INTO departments (department_id,

department_name, location_id)
VALUES (p_deptno, p_name, p_loc);

END add_dept;
PROCEDURE add_dept
(p_name IN departments.department_name%TYPE DEFAULT 'unknown',
p_loc IN departments.location_id%TYPE DEFAULT 0)

IS
BEGIN
INSERT INTO departments (department_id,

department_name, location_id)
VALUES (departments_seq.NEXTVAL, p_name, p_loc);

END add_dept;
END over_pack;

/

over_pack_body.sql

13-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Overloading: Example

• Most built-in functions are overloaded.
• For example, see the TO_CHAR function of the

STANDARD package.

• If you redeclare a built-in subprogram in a PL/SQL
program, your local declaration overrides the
global declaration.

FUNCTION TO_CHAR (p1 DATE) RETURN VARCHAR2;
FUNCTION TO_CHAR (p2 NUMBER) RETURN VARCHAR2;
FUNCTION TO_CHAR (p1 DATE, P2 VARCHAR2) RETURN VARCHAR2;
FUNCTION TO_CHAR (p1 NUMBER, P2 VARCHAR2) RETURN VARCHAR2;

13-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Using Forward Declarations

You must declare identifiers before referencing them.

CREATE OR REPLACE PACKAGE BODY forward_pack
IS
PROCEDURE award_bonus(. . .)
IS
BEGIN
calc_rating(. . .); --illegal reference

END;

PROCEDURE calc_rating(. . .)
IS
BEGIN

...
END;

END forward_pack;
/

13-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Using Forward DeclarationsUsing Forward Declarations

CREATE OR REPLACE PACKAGE BODY forward_pack
IS

PROCEDURE calc_rating(. . .); -- forward declaration

PROCEDURE award_bonus(. . .)
IS -- subprograms defined
BEGIN -- in alphabetical order
calc_rating(. . .);
. . .
END;

PROCEDURE calc_rating(. . .)
IS
BEGIN
. . .
END;

END forward_pack;
/

13-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a One-Time-Only ProcedureCreating a One-Time-Only Procedure

CREATE OR REPLACE PACKAGE taxes
IS

tax NUMBER;
... -- declare all public procedures/functions

END taxes;
/

CREATE OR REPLACE PACKAGE BODY taxes
IS
... -- declare all private variables
... -- define public/private procedures/functions

BEGIN
SELECT rate_value
INTO tax
FROM tax_rates
WHERE rate_name = 'TAX';

END taxes;
/

13-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Restrictions on Package Functions
Used in SQL

A function called from:

• A query or DML statement can not end the current
transaction, create or roll back to a savepoint, or
ALTER the system or session.

• A query statement or a parallelized DML statement
can not execute a DML statement or modify the
database.

• A DML statement can not read or modify the
particular table being modified by that DML
statement.

Note: Calls to subprograms that break the above
restrictions are not allowed.

13-12 Copyright © Oracle Corporation, 2001. All rights reserved.

CREATE OR REPLACE PACKAGE taxes_pack
IS

FUNCTION tax (p_value IN NUMBER) RETURN NUMBER;
END taxes_pack;
/

User Defined Package: taxes_pack

CREATE OR REPLACE PACKAGE BODY taxes_pack
IS

FUNCTION tax (p_value IN NUMBER) RETURN NUMBER
IS
v_rate NUMBER := 0.08;

BEGIN
RETURN (p_value * v_rate);

END tax;
END taxes_pack;
/

13-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Invoking a User-Defined Package Function
from a SQL Statement

SELECT taxes_pack.tax(salary), salary, last_name
FROM employees;

…

13-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Persistent State of Package
Variables: Example

CREATE OR REPLACE PACKAGE comm_package IS
g_comm NUMBER := 10; --initialized to 10
PROCEDURE reset_comm (p_comm IN NUMBER);

END comm_package;
/

CREATE OR REPLACE PACKAGE BODY comm_package IS
FUNCTION validate_comm (p_comm IN NUMBER)

RETURN BOOLEAN
IS v_max_comm NUMBER;
BEGIN
... -- validates commission to be less than maximum

-- commission in the table
END validate_comm;
PROCEDURE reset_comm (p_comm IN NUMBER)
IS BEGIN

... -- calls validate_comm with specified value
END reset_comm;

END comm_package;
/

13-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Persistent State of Package Variables
Time
9:00 EXECUTE

comm_package.reset_comm
(0.25)
max_comm=0.4 > 0.25
g_comm = 0.259:30

INSERT INTO employees
(last_name, commission_pct)
VALUES ('Madonna', 0.8);
max_comm=0.8

9:35
EXECUTE
comm_package.reset_comm(0.5)
max_comm=0.8 > 0.5
g_comm = 0.5

Scott Jones

13-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Persistent State of Package Variables
Time
9:00 EXECUTE

comm_package.reset_comm
(0.25)
max_comm=0.4 > 0.25
g_comm = 0.259:30

INSERT INTO employees
(last_name, commission_pct)
VALUES ('Madonna', 0.8);
max_comm=0.8

9:35
EXECUTE
comm_package.reset_comm(0.5)
max_comm=0.8 > 0.5
g_comm = 0.510:00 EXECUTE

comm_package.reset_comm
(0.6)
max_comm=0.4 < 0.6 INVALID

11:00 ROLLBACK;

11:01 EXIT

Scott Jones

13-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Persistent State of Package Variables
Time
9:00 EXECUTE

comm_package.reset_comm
(0.25)
max_comm=0.4 > 0.25
g_comm = 0.259:30

INSERT INTO employees
(last_name, commission_pct)
VALUES ('Madonna', 0.8);
max_comm=0.8

9:35
EXECUTE
comm_package.reset_comm(0.5)
max_comm=0.8 > 0.5
g_comm = 0.510:00 EXECUTE

comm_package.reset_comm
(0.6)
max_comm=0.4 < 0.6 INVALID

11:00 ROLLBACK;

11:01 EXIT

11:45 Logged In again. g_comm = 10,
max_comm=0.4

12:00 EXECUTE
comm_package.reset_comm(0.25)

Scott Jones

VALID

13-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Controlling the Persistent State of a
Package Cursor

Controlling the Persistent State of a
Package Cursor

CREATE OR REPLACE PACKAGE pack_cur
IS
CURSOR c1 IS SELECT employee_id

FROM employees
ORDER BY employee_id DESC;

PROCEDURE proc1_3rows;
PROCEDURE proc4_6rows;
END pack_cur;
/

Example:Example:

13-19 Copyright © Oracle Corporation, 2001. All rights reserved.

CREATE OR REPLACE PACKAGE BODY pack_cur IS
v_empno NUMBER;
PROCEDURE proc1_3rows IS
BEGIN

OPEN c1;
LOOP
FETCH c1 INTO v_empno;
DBMS_OUTPUT.PUT_LINE('Id :' ||(v_empno));
EXIT WHEN c1%ROWCOUNT >= 3;
END LOOP;

END proc1_3rows;
PROCEDURE proc4_6rows IS
BEGIN

LOOP
FETCH c1 INTO v_empno;
DBMS_OUTPUT.PUT_LINE('Id :' ||(v_empno));
EXIT WHEN c1%ROWCOUNT >= 6;
END LOOP;
CLOSE c1;

END proc4_6rows;
END pack_cur;
/

Controlling the Persistent State of a
Package Cursor

13-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Executing PACK_CUR

SET SERVEROUTPUT ON
EXECUTE pack_cur.proc1_3rows
EXECUTE pack_cur.proc4_6rows

13-21 Copyright © Oracle Corporation, 2001. All rights reserved.

CREATE OR REPLACE PACKAGE BODY emp_package IS
PROCEDURE read_emp_table

(p_emp_table OUT emp_table_type) IS
i BINARY_INTEGER := 0;
BEGIN
FOR emp_record IN (SELECT * FROM employees)
LOOP

p_emp_table(i) := emp_record;
i:= i+1;

END LOOP;
END read_emp_table;

END emp_package;
/

PL/SQL Tables
and Records in Packages

CREATE OR REPLACE PACKAGE emp_package IS
TYPE emp_table_type IS TABLE OF employees%ROWTYPE

INDEX BY BINARY_INTEGER;
PROCEDURE read_emp_table

(p_emp_table OUT emp_table_type);
END emp_package;
/

13-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

In this lesson, you should have learned how to:

• Overload subprograms

• Use forward referencing

• Use one-time-only procedures

• Describe the purity level of package functions

• Identify the persistent state of packaged objects

13-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 13 OverviewPractice 13 Overview

This practice covers the following topics:

• Using overloaded subprograms

• Creating a one-time-only procedure

This practice covers the following topics:

• Using overloaded subprograms

• Creating a one-time-only procedure

14
Copyright © Oracle Corporation, 2001. All rights reserved.

Oracle Supplied Packages

14-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

• Write dynamic SQL statements using DBMS_SQL
and EXECUTE IMMEDIATE

• Describe the use and application of some Oracle
server-supplied packages:
– DBMS_DDL
– DBMS_JOB
– DBMS_OUTPUT
– UTL_FILE
– UTL_HTTP and UTL_TCP

14-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Using Supplied PackagesUsing Supplied Packages

Oracle-supplied packages:

• Are provided with the Oracle server

• Extend the functionality of the database

• Enable access to certain SQL features normally
restricted for PL/SQL

Oracle-supplied packages:

• Are provided with the Oracle server

• Extend the functionality of the database

• Enable access to certain SQL features normally
restricted for PL/SQL

14-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Using Native Dynamic SQL

Dynamic SQL:

• Is a SQL statement that contains variables that can
change during runtime

• Is a SQL statement with placeholders and is stored
as a character string

• Enables general-purpose code to be written

• Enables data-definition, data-control, or session-
control statements to be written and executed
from PL/SQL

• Is written using either DBMS_SQL or native dynamic
SQL

14-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Execution Flow

SQL statements go through various stages:

• Parse

• Bind

• Execute

• Fetch

Note: Some stages may be skipped.

14-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the DBMS_SQL Package

The DBMS_SQL package is used to write dynamic SQL
in stored procedures and to parse DDL statements.
Some of the procedures and functions of the package
include:

– OPEN_CURSOR
– PARSE
– BIND_VARIABLE
– EXECUTE
– FETCH_ROWS
– CLOSE_CURSOR

14-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Using DBMS_SQL

Use dynamic SQL to delete rowsUse dynamic SQL to delete rows
VARIABLE deleted NUMBER
EXECUTE delete_all_rows('employees', :deleted)
PRINT deleted

CREATE OR REPLACE PROCEDURE delete_all_rows
(p_tab_name IN VARCHAR2, p_rows_del OUT NUMBER)

IS
cursor_name INTEGER;

BEGIN
cursor_name := DBMS_SQL.OPEN_CURSOR;
DBMS_SQL.PARSE(cursor_name, 'DELETE FROM '||p_tab_name,

DBMS_SQL.NATIVE);
p_rows_del := DBMS_SQL.EXECUTE (cursor_name);
DBMS_SQL.CLOSE_CURSOR(cursor_name);

END;
/

14-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Use the EXECUTE IMMEDIATE statement for native
dynamic SQL with better performance.

• INTO is used for single-row queries and specifies
the variables or records into which column values
are retrieved.

• USING is used to hold all bind arguments. The
default parameter mode is IN.

Using the EXECUTE IMMEDIATE StatementUsing the EXECUTE IMMEDIATE Statement

EXECUTE IMMEDIATE dynamic_string
[INTO {define_variable

[, define_variable] ... | record}]
[USING [IN|OUT|IN OUT] bind_argument

[, [IN|OUT|IN OUT] bind_argument] ...];

14-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Dynamic SQL Using EXECUTE IMMEDIATE

CREATE PROCEDURE del_rows
(p_table_name IN VARCHAR2,
p_rows_deld OUT NUMBER)

IS
BEGIN
EXECUTE IMMEDIATE 'delete from '||p_table_name;
p_rows_deld := SQL%ROWCOUNT;

END;
/

VARIABLE deleted NUMBER
EXECUTE del_rows('test_employees',:deleted)
PRINT deleted

14-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the DBMS_DDL Package

The DBMS_DDL Package:

• Provides access to some SQL DDL statements
from stored procedures

• Includes some procedures:
– ALTER_COMPILE (object_type, owner, object_name)

– ANALYZE_OBJECT (object_type, owner, name,
method)

Note: This package runs with the privileges of calling
user, rather than the package owner SYS.

DBMS_DDL.ALTER_COMPILE('PROCEDURE','A_USER','QUERY_EMP')

DBMS_DDL.ANALYZE_OBJECT('TABLE','A_USER','JOBS','COMPUTE')

14-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Using DBMS_JOB for Scheduling

DBMS_JOB Enables the scheduling and execution of
PL/SQL programs:

• Submitting jobs

• Executing jobs

• Changing execution parameters of jobs

• Removing jobs

• Suspending Jobs

14-14 Copyright © Oracle Corporation, 2001. All rights reserved.

DBMS_JOB Subprograms

Available subprograms include:
• SUBMIT
• REMOVE
• CHANGE
• WHAT
• NEXT_DATE
• INTERVAL
• BROKEN
• RUN

14-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Submitting Jobs

You can submit jobs by using DBMS_JOB.SUBMIT.

Available parameters include:
• JOB OUT BINARY_INTEGER
• WHAT IN VARCHAR2
• NEXT_DATE IN DATE DEFAULT SYSDATE
• INTERVAL IN VARCHAR2 DEFAULT 'NULL'
• NO_PARSE IN BOOLEAN DEFAULT FALSE

14-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Submitting Jobs

Use DBMS_JOB.SUBMIT to place a job to be executed
in the job queue.
VARIABLE jobno NUMBER
BEGIN
DBMS_JOB.SUBMIT (
job => :jobno,
what => 'OVER_PACK.ADD_DEPT(''EDUCATION'',2710);',
next_date => TRUNC(SYSDATE + 1),
interval => 'TRUNC(SYSDATE + 1)'
);
COMMIT;

END;
/
PRINT jobno

14-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Changing Job Characteristics

• DBMS_JOB.CHANGE: Changes the WHAT, NEXT_DATE,
and INTERVAL parameters

• DBMS_JOB.INTERVAL: Changes the INTERVAL
parameter

• DBMS_JOB.NEXT_DATE: Changes the next execution
date

• DBMS_JOB.WHAT: Changes the WHAT parameter

14-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Running, Removing, and Breaking JobsRunning, Removing, and Breaking Jobs

• DBMS_JOB.RUN: Runs a submitted job immediately

• DBMS_JOB.REMOVE: Removes a submitted job from
the job queue

• DBMS_JOB.BROKEN: Marks a submitted job as
broken, and a broken job will not run

• DBMS_JOB.RUN: Runs a submitted job immediately

• DBMS_JOB.REMOVE: Removes a submitted job from
the job queue

• DBMS_JOB.BROKEN: Marks a submitted job as
broken, and a broken job will not run

14-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Viewing Information on Submitted JobsViewing Information on Submitted Jobs

• Use the DBA_JOBS dictionary view to see the
status of submitted jobs.

• Use the DBA_JOBS_RUNNING dictionary view to
display jobs that are currently running.

• Use the DBA_JOBS dictionary view to see the
status of submitted jobs.

• Use the DBA_JOBS_RUNNING dictionary view to
display jobs that are currently running.

SELECT job, log_user, next_date, next_sec,
broken, what

FROM DBA_JOBS;

14-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the DBMS_OUTPUT PackageUsing the DBMS_OUTPUT Package

The DBMS_OUTPUT package enables you to output

messages from PL/SQL blocks. Available procedures
include:
• PUT
• NEW_LINE
• PUT_LINE
• GET_LINE
• GET_LINES
• ENABLE/DISABLE

The DBMS_OUTPUT package enables you to output

messages from PL/SQL blocks. Available procedures
include:
• PUT
• NEW_LINE
• PUT_LINE
• GET_LINE
• GET_LINES
• ENABLE/DISABLE

14-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Interacting with Operating System FilesInteracting with Operating System Files

• UTL_FILE Oracle-supplied package:

– Provides text file I/O capabilities

– Is available with version 7.3 and later

• The DBMS_LOB Oracle-supplied package:
– Provides read-only operations on external BFILES

– Is available with version 8 and later
– Enables read and write operations on internal LOBs

• UTL_FILE Oracle-supplied package:

– Provides text file I/O capabilities

– Is available with version 7.3 and later

• The DBMS_LOB Oracle-supplied package:
– Provides read-only operations on external BFILES

– Is available with version 8 and later
– Enables read and write operations on internal LOBs

14-22 Copyright © Oracle Corporation, 2001. All rights reserved.

What Is the UTL_FILE Package?

• Extends I/O to text files within PL/SQL

• Provides security for directories on the server
through the init.ora file

• Is similar to standard operating system I/O
– Open files

– Get text

– Put text

– Close files
– Use the exceptions specific to the UTL_FILE

package

14-23 Copyright © Oracle Corporation, 2001. All rights reserved.

YesGet lines
from the
text file

Put lines
into the
text file

More
lines to
process?

No Close
the

text file

File Processing Using the
UTL_FILE Package

File Processing Using the File Processing Using the
UTL_FILEUTL_FILE PackagePackage

Open the
text file

14-24 Copyright © Oracle Corporation, 2001. All rights reserved.

UTL_FILE Procedures and FunctionsUTL_FILE Procedures and Functions

• Function FOPEN
• Function IS_OPEN
• Procedure GET_LINE
• Procedure PUT, PUT_LINE, PUTF
• Procedure NEW_LINE
• Procedure FFLUSH
• Procedure FCLOSE, FCLOSE_ALL

• Function FOPEN
• Function IS_OPEN
• Procedure GET_LINE
• Procedure PUT, PUT_LINE, PUTF
• Procedure NEW_LINE
• Procedure FFLUSH
• Procedure FCLOSE, FCLOSE_ALL

14-25 Copyright © Oracle Corporation, 2001. All rights reserved.

Exceptions Specific to the UTL_FILE
Package

Exceptions Specific to the UTL_FILE
Package

• INVALID_PATH
• INVALID_MODE
• INVALID_FILEHANDLE
• INVALID_OPERATION
• READ_ERROR
• WRITE_ERROR
• INTERNAL_ERROR

• INVALID_PATH
• INVALID_MODE
• INVALID_FILEHANDLE
• INVALID_OPERATION
• READ_ERROR
• WRITE_ERROR
• INTERNAL_ERROR

14-26 Copyright © Oracle Corporation, 2001. All rights reserved.

FUNCTION FOPEN
(location IN VARCHAR2,
filename IN VARCHAR2,
open_mode IN VARCHAR2)
RETURN UTL_FILE.FILE_TYPE;

FUNCTION IS_OPEN
(file_handle IN FILE_TYPE)
RETURN BOOLEAN;

The FOPEN and IS_OPEN FunctionsThe FOPEN and IS_OPEN Functions

14-27 Copyright © Oracle Corporation, 2001. All rights reserved.

CREATE OR REPLACE PROCEDURE sal_status
(p_filedir IN VARCHAR2, p_filename IN VARCHAR2)
IS
v_filehandle UTL_FILE.FILE_TYPE;
CURSOR emp_info IS
SELECT last_name, salary, department_id
FROM employees
ORDER BY department_id;

v_newdeptno employees.department_id%TYPE;
v_olddeptno employees.department_id%TYPE := 0;
BEGIN
v_filehandle := UTL_FILE.FOPEN (p_filedir, p_filename,'w');
UTL_FILE.PUTF (v_filehandle,'SALARY REPORT: GENERATED ON

%s\n', SYSDATE);
UTL_FILE.NEW_LINE (v_filehandle);
FOR v_emp_rec IN emp_info LOOP
v_newdeptno := v_emp_rec.department_id;

...

Using UTL_FILEUsing UTL_FILE
sal_status.sql

14-28 Copyright © Oracle Corporation, 2001. All rights reserved.

...
IF v_newdeptno <> v_olddeptno THEN
UTL_FILE.PUTF (v_filehandle, 'DEPARTMENT: %s\n',

v_emp_rec.department_id);
END IF;
UTL_FILE.PUTF (v_filehandle,' EMPLOYEE: %s earns: %s\n',

v_emp_rec.last_name, v_emp_rec.salary);
v_olddeptno := v_newdeptno;

END LOOP;
UTL_FILE.PUT_LINE (v_filehandle, '*** END OF REPORT ***');
UTL_FILE.FCLOSE (v_filehandle);

EXCEPTION
WHEN UTL_FILE.INVALID_FILEHANDLE THEN
RAISE_APPLICATION_ERROR (-20001, 'Invalid File.');

WHEN UTL_FILE.WRITE_ERROR THEN
RAISE_APPLICATION_ERROR (-20002, 'Unable to write to

file');
END sal_status;
/

Using UTL_FILEUsing UTL_FILE
sal_status.sql

14-29 Copyright © Oracle Corporation, 2001. All rights reserved.

The UTL_HTTP PackageThe UTL_HTTP Package

The UTL_HTTP package:

• Enables HTTP callouts from PL/SQL and SQL to
access data on the Internet

• Contains the functions REQUEST and
REQUEST_PIECES which take the URL of a site as a
parameter, contact that site, and return the data
obtained from that site

• Requires a proxy parameter to be specified in the
above functions, if the client is behind a firewall

• Raises INIT_FAILED or REQUEST_FAILED
exceptions if HTTP call fails

• Reports an HTML error message if specified URL
is not accessible

The UTL_HTTP package:

• Enables HTTP callouts from PL/SQL and SQL to
access data on the Internet

• Contains the functions REQUEST and
REQUEST_PIECES which take the URL of a site as a
parameter, contact that site, and return the data
obtained from that site

• Requires a proxy parameter to be specified in the
above functions, if the client is behind a firewall

• Raises INIT_FAILED or REQUEST_FAILED
exceptions if HTTP call fails

• Reports an HTML error message if specified URL
is not accessible

14-30 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT UTL_HTTP.REQUEST('http://www.oracle.com',
'edu-proxy.us.oracle.com')

FROM DUAL;

Using the UTL_HTTP Package Using the UTL_HTTP Package

14-31 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the UTL_TCP PackageUsing the UTL_TCP Package

The UTL_TCP Package:

• Enables PL/SQL applications to communicate with
external TCP/IP-based servers using TCP/IP

• Contains functions to open and close connections,
to read or write binary or text data to or from a
service on an open connection

• Requires remote host and port as well as local host
and port as arguments to its functions

• Raises exceptions if the buffer size is too small,
when no more data is available to read from a
connection, when a generic network error occurs, or
when bad arguments are passed to a function call

The UTL_TCP Package:

• Enables PL/SQL applications to communicate with
external TCP/IP-based servers using TCP/IP

• Contains functions to open and close connections,
to read or write binary or text data to or from a
service on an open connection

• Requires remote host and port as well as local host
and port as arguments to its functions

• Raises exceptions if the buffer size is too small,
when no more data is available to read from a
connection, when a generic network error occurs, or
when bad arguments are passed to a function call

14-32 Copyright © Oracle Corporation, 2001. All rights reserved.

Oracle-Supplied PackagesOracle-Supplied Packages

• DBMS_ALERT
• DBMS_APPLICATION_INFO
• DBMS_DESCRIBE
• DBMS_LOCK
• DBMS_SESSION

• DBMS_ALERT
• DBMS_APPLICATION_INFO
• DBMS_DESCRIBE
• DBMS_LOCK
• DBMS_SESSION

Other Oracle-supplied packages include:

• DBMS_SHARED_POOL
• DBMS_TRANSACTION
• DBMS_UTILITY

• DBMS_SHARED_POOL
• DBMS_TRANSACTION
• DBMS_UTILITY

14-37 Copyright © Oracle Corporation, 2001. All rights reserved.

SummarySummary

In this lesson, you should have learned how to:

• Take advantage of the preconfigured packages
that are provided by Oracle

• Create packages by using the catproc.sql script

• Create packages individually.

In this lesson, you should have learned how to:

• Take advantage of the preconfigured packages
that are provided by Oracle

• Create packages by using the catproc.sql script

• Create packages individually.

14-38 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 14 OverviewPractice 14 Overview

This practice covers using:
• DBMS_SQL for dynamic SQL

• DBMS_DDL to analyze a table

• DBMS_JOB to schedule a task

• UTL_FILE to generate text reports

This practice covers using:
• DBMS_SQL for dynamic SQL

• DBMS_DDL to analyze a table

• DBMS_JOB to schedule a task

• UTL_FILE to generate text reports

15
Copyright © Oracle Corporation, 2001. All rights reserved.

Manipulating Large Objects

15-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

• Compare and contrast LONG and large object (LOB)
data types

• Create and maintain LOB data types

• Differentiate between internal and external LOBs

• Use the DBMS_LOB PL/SQL package

• Describe the use of temporary LOBs

15-3 Copyright © Oracle Corporation, 2001. All rights reserved.

What Is a LOB?

Movie
(BFILE)

Photo
(BLOB)

“Four score and seven years ago
our fathers brought forth upon
this continent, a new nation,
conceived in LIBERTY, and dedicated
to the proposition that all men
are created equal.”

Text
(CLOB)

LOBs are used to store large unstructured data such as
text, graphic images, films, and sound waveforms.

15-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Contrasting LONG and LOB Data TypesContrasting LONG and LOB Data Types

LONG and LONG RAW

Single LONG column per table

Up to 2 GB

SELECT returns data

Data stored in-line

Sequential access to data

LOB

Multiple LOB columns per table

Up to 4 GB

SELECT returns locator

Data stored in-line or out-of-line

Random access to data

15-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Anatomy of a LOB

LOB locator

The LOB column stores a locator to the LOB's value.

LOB column
of a table

LOB value

15-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Internal LOBs

The LOB value is stored in the database.

“Four score and seven years ago
our fathers brought forth upon
this continent, a new nation,
conceived in LIBERTY, and dedicated
to the proposition that all men
are created equal.”

CLOB BLOB

15-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Managing Internal LOBsManaging Internal LOBs

• To interact fully with LOB, file-like interfaces are
provided in:
– PL/SQL package DBMS_LOB
– Oracle Call Interface (OCI)

– Oracle Objects for object linking and embedding
(OLE)

– Pro*C/C++ and Pro*COBOL precompilers

– JDBC

• The Oracle server provides some support for LOB
management through SQL.

• To interact fully with LOB, file-like interfaces are
provided in:
– PL/SQL package DBMS_LOB
– Oracle Call Interface (OCI)

– Oracle Objects for object linking and embedding
(OLE)

– Pro*C/C++ and Pro*COBOL precompilers

– JDBC

• The Oracle server provides some support for LOB
management through SQL.

15-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Movie
(BFILE)

What Are BFILEs?

The BFILE data type
supports an external or
file-based large object as:
• Attributes in an object type

• Column values in a table

15-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Securing BFILEs

User

Movie
(BFILE)

Access
permissions

15-10 Copyright © Oracle Corporation, 2001. All rights reserved.

A New Database Object: DIRECTORYA New Database Object: DIRECTORY

DIRECTORY

LOB_PATH =
'/oracle/lob/'

User

Movie
(BFILE)

15-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Guidelines for Creating DIRECTORY
Objects

Guidelines for Creating DIRECTORY
Objects

• Do not create DIRECTORY objects on paths with
database files.

• Limit the number of people who are given the
following system privileges:
– CREATE ANY DIRECTORY
– DROP ANY DIRECTORY

• All DIRECTORY objects are owned by SYS.

• Create directory paths and properly set
permissions before using the DIRECTORY object
so that the Oracle server can read the file.

• Do not create DIRECTORY objects on paths with
database files.

• Limit the number of people who are given the
following system privileges:
– CREATE ANY DIRECTORY
– DROP ANY DIRECTORY

• All DIRECTORY objects are owned by SYS.

• Create directory paths and properly set
permissions before using the DIRECTORY object
so that the Oracle server can read the file.

15-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Managing BFILEsManaging BFILEs

• Create an OS directory and supply files.

• Create an Oracle table with a column that holds
the BFILE data type.

• Create a DIRECTORY object.

• Grant privileges to read the DIRECTORY object to
users.

• Insert rows into the table by using the BFILENAME
function.

• Declare and initialize a LOB locator in a program.

• Read the BFILE.

• Create an OS directory and supply files.

• Create an Oracle table with a column that holds
the BFILE data type.

• Create a DIRECTORY object.

• Grant privileges to read the DIRECTORY object to
users.

• Insert rows into the table by using the BFILENAME
function.

• Declare and initialize a LOB locator in a program.

• Read the BFILE.

15-13 Copyright © Oracle Corporation, 2001. All rights reserved.

• Create or modify an Oracle table with a column
that holds the BFILE data type.

• Create a DIRECTORY object by using the CREATE
DIRECTORY command.

• Grant privileges to read the DIRECTORY object to
users.

• Create or modify an Oracle table with a column
that holds the BFILE data type.

• Create a DIRECTORY object by using the CREATE
DIRECTORY command.

• Grant privileges to read the DIRECTORY object to
users.

ALTER TABLE employees
ADD emp_video BFILE;

Preparing to Use BFILEsPreparing to Use BFILEs

CREATE DIRECTORY dir_name
AS os_path;

GRANT READ ON DIRECTORY dir_name TO
user|role|PUBLIC;

15-14 Copyright © Oracle Corporation, 2001. All rights reserved.

FUNCTION BFILENAME (directory_alias IN VARCHAR2,
filename IN VARCHAR2)

RETURN BFILE;

The BFILENAME FunctionThe BFILENAME Function

Use the BFILENAME function to initialize a BFILE
column.
Use the BFILENAME function to initialize a BFILE
column.

15-15 Copyright © Oracle Corporation, 2001. All rights reserved.

CREATE OR REPLACE PROCEDURE load_emp_bfile
(p_file_loc IN VARCHAR2) IS

v_file BFILE;
v_filename VARCHAR2(16);
CURSOR emp_cursor IS

SELECT first_name FROM employees
WHERE department_id = 60 FOR UPDATE;

BEGIN
FOR emp_record IN emp_cursor LOOP

v_filename := emp_record.first_name || '.bmp';
v_file := BFILENAME(p_file_loc, v_filename);
DBMS_LOB.FILEOPEN(v_file);
UPDATE employees SET emp_video = v_file

WHERE CURRENT OF emp_cursor;
DBMS_OUTPUT.PUT_LINE('LOADED FILE: '||v_filename

|| ' SIZE: ' || DBMS_LOB.GETLENGTH(v_file));
DBMS_LOB.FILECLOSE(v_file);

END LOOP;
END load_emp_bfile;
/

Loading BFILEsLoading BFILEs

15-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Loading BFILEsLoading BFILEs

Use the DBMS_LOB.FILEEXISTS function to vefiry
that the file exists in the operating system. The function
returns 0 if the file does not exist, and returns 1 if the
file does exist.

Use the DBMS_LOB.FILEEXISTS function to vefiry
that the file exists in the operating system. The function
returns 0 if the file does not exist, and returns 1 if the
file does exist.

CREATE OR REPLACE PROCEDURE load_emp_bfile
(p_file_loc IN VARCHAR2)
IS

v_file BFILE; v_filename VARCHAR2(16);
v_file_exists BOOLEAN;
CURSOR emp_cursor IS ...

BEGIN
FOR emp_record IN emp_cursor LOOP
v_filename := emp_record.first_name || '.bmp';
v_file := BFILENAME (p_file_loc, v_filename);
v_file_exists := (DBMS_LOB.FILEEXISTS(v_file) = 1);
IF v_file_exists THEN

DBMS_LOB.FILEOPEN (v_file); ...

15-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Migrating from LONG to LOBMigrating from LONG to LOB

The Oracle9i server allows migration of LONG columns to
LOB columns.

• Data migration consists of the procedure to move
existing tables containing LONG columns to use LOBs.

• Application migration consists of changing existing LONG
applications for using LOBs.

The Oracle9i server allows migration of LONG columns to
LOB columns.

• Data migration consists of the procedure to move
existing tables containing LONG columns to use LOBs.

• Application migration consists of changing existing LONG
applications for using LOBs.

ALTER TABLE [<schema>.] <table_name>
MODIFY (<long_col_name> {CLOB | BLOB | NCLOB}

15-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Migrating From LONG to LOBMigrating From LONG to LOB

• Implicit conversion: LONG (LONG RAW) or a
VARCHAR2(RAW) variable to a CLOB (BLOB) variable, and
vice versa

• Explicit conversion:
– TO_CLOB() converts LONG, VARCHAR2, and CHAR to CLOB
– TO_BLOB() converts LONG RAW and RAW to BLOB

• Function and Procedure Parameter Passing:
– CLOBs and BLOBs as actual parameters

– VARCHAR2, LONG, RAW, and LONG RAW are formal
parameters, and vice versa

• LOB data is acceptable in most of the SQL and PL/SQL
operators and built-in functions

• Implicit conversion: LONG (LONG RAW) or a
VARCHAR2(RAW) variable to a CLOB (BLOB) variable, and
vice versa

• Explicit conversion:
– TO_CLOB() converts LONG, VARCHAR2, and CHAR to CLOB
– TO_BLOB() converts LONG RAW and RAW to BLOB

• Function and Procedure Parameter Passing:
– CLOBs and BLOBs as actual parameters

– VARCHAR2, LONG, RAW, and LONG RAW are formal
parameters, and vice versa

• LOB data is acceptable in most of the SQL and PL/SQL
operators and built-in functions

15-19 Copyright © Oracle Corporation, 2001. All rights reserved.

The DBMS_LOB PackageThe DBMS_LOB Package

• Working with LOB often requires the use of the
Oracle-supplied package DBMS_LOB.

• DBMS_LOB provides routines to access and
manipulate internal and external LOBs.

• Oracle9i enables retrieving LOB data directly using
SQL, without using any special LOB API.

• In PL/SQL you can define a VARCHAR2 for a CLOB
and a RAW for BLOB.

• Working with LOB often requires the use of the
Oracle-supplied package DBMS_LOB.

• DBMS_LOB provides routines to access and
manipulate internal and external LOBs.

• Oracle9i enables retrieving LOB data directly using
SQL, without using any special LOB API.

• In PL/SQL you can define a VARCHAR2 for a CLOB
and a RAW for BLOB.

15-20 Copyright © Oracle Corporation, 2001. All rights reserved.

• Modify LOB values:

APPEND, COPY, ERASE, TRIM, WRITE, LOADFROMFILE
• Read or examine LOB values:

GETLENGTH, INSTR, READ, SUBSTR
• Specific to BFILEs:

FILECLOSE, FILECLOSEALL, FILEEXISTS,
FILEGETNAME, FILEISOPEN, FILEOPEN

• Modify LOB values:

APPEND, COPY, ERASE, TRIM, WRITE, LOADFROMFILE
• Read or examine LOB values:

GETLENGTH, INSTR, READ, SUBSTR
• Specific to BFILEs:

FILECLOSE, FILECLOSEALL, FILEEXISTS,
FILEGETNAME, FILEISOPEN, FILEOPEN

The DBMS_LOB PackageThe DBMS_LOB Package

15-21 Copyright © Oracle Corporation, 2001. All rights reserved.

The DBMS_LOB PackageThe DBMS_LOB Package

• NULL parameters get NULL returns.

• Offsets:
– BLOB, BFILE: Measured in bytes

– CLOB, NCLOB: Measured in characters

• There are no negative values for parameters.

• NULL parameters get NULL returns.

• Offsets:
– BLOB, BFILE: Measured in bytes

– CLOB, NCLOB: Measured in characters

• There are no negative values for parameters.

15-22 Copyright © Oracle Corporation, 2001. All rights reserved.

DBMS_LOB.READ and DBMS_LOB.WRITEDBMS_LOB.READ and DBMS_LOB.WRITE

PROCEDURE READ (
lobsrc IN BFILE|BLOB|CLOB ,
amount IN OUT BINARY_INTEGER,
offset IN INTEGER,
buffer OUT RAW|VARCHAR2)

PROCEDURE WRITE (
lobdst IN OUT BLOB|CLOB,
amount IN OUT BINARY_INTEGER,
offset IN INTEGER := 1,
buffer IN RAW|VARCHAR2) -- RAW for BLOB

15-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Adding LOB Columns
to a Table

Adding LOB Columns
to a Table

ALTER TABLE employees ADD
(resume CLOB,
picture BLOB);

15-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Insert a row into a table with LOB columns:Insert a row into a table with LOB columns:

Initialize a LOB column using the EMPTY_BLOB() function:

Populating LOB ColumnsPopulating LOB Columns

INSERT INTO employees (employee_id, first_name,
last_name, email, hire_date, job_id,
salary, resume, picture)

VALUES (405, 'Marvin', 'Ellis', 'MELLIS', SYSDATE,
'AD_ASST', 4000, EMPTY_CLOB(),NULL);

UPDATE employees
SET resume = 'Date of Birth: 8 February 1951',

picture = EMPTY_BLOB()
WHERE employee_id = 405;

15-26 Copyright © Oracle Corporation, 2001. All rights reserved.

UPDATE CLOB column

Updating LOB by Using SQLUpdating LOB by Using SQL

UPDATE employees
SET resume = 'Date of Birth: 1 June 1956'
WHERE employee_id = 170;

15-27 Copyright © Oracle Corporation, 2001. All rights reserved.

Updating LOB by Using DBMS_LOB in
PL/SQL

Updating LOB by Using DBMS_LOB in
PL/SQL

DECLARE
lobloc CLOB; -- serves as the LOB locator
text VARCHAR2(32767):='Resigned: 5 August 2000';
amount NUMBER ; -- amount to be written
offset INTEGER; -- where to start writing

BEGIN
SELECT resume INTO lobloc
FROM employees
WHERE employee_id = 405 FOR UPDATE;
offset := DBMS_LOB.GETLENGTH(lobloc) + 2;
amount := length(text);
DBMS_LOB.WRITE (lobloc, amount, offset, text);
text := ' Resigned: 30 September 2000';
SELECT resume INTO lobloc
FROM employees
WHERE employee_id = 170 FOR UPDATE;
amount := length(text);
DBMS_LOB.WRITEAPPEND(lobloc, amount, text);
COMMIT;

END;

15-28 Copyright © Oracle Corporation, 2001. All rights reserved.

Selecting CLOB Values by Using SQLSelecting CLOB Values by Using SQL

SELECT employee_id, last_name , resume -- CLOB
FROM employees
WHERE employee_id IN (405, 170);

15-29 Copyright © Oracle Corporation, 2001. All rights reserved.

Selecting CLOB Values by Using DBMS_LOBSelecting CLOB Values by Using DBMS_LOB

• DBMS_LOB.SUBSTR(lob_column, no_of_chars, starting)

• DBMS_LOB.INSTR (lob_column, pattern)

• DBMS_LOB.SUBSTR(lob_column, no_of_chars, starting)

• DBMS_LOB.INSTR (lob_column, pattern)

SELECT DBMS_LOB.SUBSTR (resume, 5, 18),
DBMS_LOB.INSTR (resume,' = ')

FROM employees
WHERE employee_id IN (170, 405);

15-30 Copyright © Oracle Corporation, 2001. All rights reserved.

Selecting CLOB Values in PL/SQL

DECLARE
text VARCHAR2(4001);

BEGIN
SELECT resume INTO text
FROM employees
WHERE employee_id = 170;
DBMS_OUTPUT.PUT_LINE('text is: '|| text);
END;
/

15-31 Copyright © Oracle Corporation, 2001. All rights reserved.

Delete a row containing LOBs:

Disassociate a LOB value from a row:

Delete a row containing LOBs:

Disassociate a LOB value from a row:

Removing LOBsRemoving LOBs

DELETE
FROM employees
WHERE employee_id = 405;

UPDATE employees
SET resume = EMPTY_CLOB()
WHERE employee_id = 170;

15-32 Copyright © Oracle Corporation, 2001. All rights reserved.

Temporary LOBsTemporary LOBs

• Temporary LOBs:
– Provide an interface to support creation of LOBs

that act like local variables
– Can be BLOBs, CLOBs, or NCLOBs

– Are not associated with a specific table
– Are created using DBMS_LOB.CREATETEMPORARY

procedure
– Use DBMS_LOB routines

• The lifetime of a temporary LOB is a session.

• Temporary LOBs are useful for transforming data
in permanent internal LOBs.

• Temporary LOBs:
– Provide an interface to support creation of LOBs

that act like local variables
– Can be BLOBs, CLOBs, or NCLOBs

– Are not associated with a specific table
– Are created using DBMS_LOB.CREATETEMPORARY

procedure
– Use DBMS_LOB routines

• The lifetime of a temporary LOB is a session.

• Temporary LOBs are useful for transforming data
in permanent internal LOBs.

15-33 Copyright © Oracle Corporation, 2001. All rights reserved.

PL/SQL procedure to create and test a temporary LOB:

Creating a Temporary LOBCreating a Temporary LOB

CREATE OR REPLACE PROCEDURE IsTempLOBOpen
(p_lob_loc IN OUT BLOB, p_retval OUT INTEGER)

IS
BEGIN
-- create a temporary LOB
DBMS_LOB.CREATETEMPORARY (p_lob_loc, TRUE);
-- see if the LOB is open: returns 1 if open
p_retval := DBMS_LOB.ISOPEN (p_lob_loc);
DBMS_OUTPUT.PUT_LINE ('The file returned a value

....' || p_retval);
-- free the temporary LOB
DBMS_LOB.FREETEMPORARY (p_lob_loc);

END;
/

15-34 Copyright © Oracle Corporation, 2001. All rights reserved.

SummarySummary

In this lesson, you should have learned how to:
• Identify four built-in types for large objects: BLOB,

CLOB, NCLOB, and BFILE
• Describe how LOBs replace LONG and LONG RAW
• Describe two storage options for LOBs:

– The Oracle server (internal LOBs)

– External host files (external LOBs)

• Use the DBMS_LOB PL/SQL package to provide
routines for LOB management

• Use temporary LOBs in a session

In this lesson, you should have learned how to:
• Identify four built-in types for large objects: BLOB,

CLOB, NCLOB, and BFILE
• Describe how LOBs replace LONG and LONG RAW
• Describe two storage options for LOBs:

– The Oracle server (internal LOBs)

– External host files (external LOBs)

• Use the DBMS_LOB PL/SQL package to provide
routines for LOB management

• Use temporary LOBs in a session

15-35 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 15 OverviewPractice 15 Overview

This practice covers the following topics:

• Creating object types, using the new data types
CLOB and BLOB

• Creating a table with LOB data types as columns

• Using the DBMS_LOB package to populate and
interact with the LOB data

This practice covers the following topics:

• Creating object types, using the new data types
CLOB and BLOB

• Creating a table with LOB data types as columns

• Using the DBMS_LOB package to populate and
interact with the LOB data

16
Copyright © Oracle Corporation, 2001. All rights reserved.

Creating Database Triggers

16-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

• Describe different types of triggers

• Describe database triggers and their use

• Create database triggers

• Describe database trigger firing rules

• Remove database triggers

16-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Types of TriggersTypes of Triggers

A trigger:

• Is a PL/SQL block or a PL/SQL procedure
associated with a table, view, schema, or the
database

• Executes implicitly whenever a particular event
takes place

• Can be either:
– Application trigger: Fires whenever an event occurs

with a particular application

– Database trigger: Fires whenever a data event (such
as DML) or system event (such as logon or
shutdown) occurs on a schema or database

A trigger:

• Is a PL/SQL block or a PL/SQL procedure
associated with a table, view, schema, or the
database

• Executes implicitly whenever a particular event
takes place

• Can be either:
– Application trigger: Fires whenever an event occurs

with a particular application

– Database trigger: Fires whenever a data event (such
as DML) or system event (such as logon or
shutdown) occurs on a schema or database

16-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Guidelines for Designing TriggersGuidelines for Designing Triggers

• Design triggers to:
– Perform related actions

– Centralize global operations

• Do not design triggers:
– Where functionality is already built into the Oracle

server

– That duplicate other triggers

• Create stored procedures and invoke them in a
trigger, if the PL/SQL code is very lengthy.

• The excessive use of triggers can result in
complex interdependencies, which may be difficult
to maintain in large applications.

• Design triggers to:
– Perform related actions

– Centralize global operations

• Do not design triggers:
– Where functionality is already built into the Oracle

server

– That duplicate other triggers

• Create stored procedures and invoke them in a
trigger, if the PL/SQL code is very lengthy.

• The excessive use of triggers can result in
complex interdependencies, which may be difficult
to maintain in large applications.

16-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Application

INSERT INTO EMPLOYEES
. . .;

EMPLOYEES table CHECK_SAL trigger

Database Trigger: Example

…

16-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating DML TriggersCreating DML Triggers

A triggering statement contains:

• Trigger timing
– For table: BEFORE, AFTER
– For view: INSTEAD OF

• Triggering event: INSERT, UPDATE, or DELETE

• Table name: On table, view

• Trigger type: Row or statement

• WHEN clause: Restricting condition

• Trigger body: PL/SQL block

A triggering statement contains:

• Trigger timing
– For table: BEFORE, AFTER
– For view: INSTEAD OF

• Triggering event: INSERT, UPDATE, or DELETE

• Table name: On table, view

• Trigger type: Row or statement

• WHEN clause: Restricting condition

• Trigger body: PL/SQL block

16-7 Copyright © Oracle Corporation, 2001. All rights reserved.

DML Trigger ComponentsDML Trigger Components

Trigger timing: When should the trigger fire?
• BEFORE: Execute the trigger body before the

triggering DML event on a table.
• AFTER: Execute the trigger body after the

triggering DML event on a table.
• INSTEAD OF: Execute the trigger body instead of

the triggering statement. This is used for views
that are not otherwise modifiable.

Trigger timing: When should the trigger fire?
• BEFORE: Execute the trigger body before the

triggering DML event on a table.
• AFTER: Execute the trigger body after the

triggering DML event on a table.
• INSTEAD OF: Execute the trigger body instead of

the triggering statement. This is used for views
that are not otherwise modifiable.

16-8 Copyright © Oracle Corporation, 2001. All rights reserved.

DML Trigger Components

Triggering user event: Which DML statement causes
the trigger to execute? You can use any of the
following:
• INSERT
• UPDATE
• DELETE

16-9 Copyright © Oracle Corporation, 2001. All rights reserved.

DML Trigger Components

Trigger type: Should the trigger body execute for each
row the statement affects or only once?

• Statement: The trigger body executes once for the
triggering event. This is the default. A statement
trigger fires once, even if no rows are affected at all.

• Row: The trigger body executes once for each row
affected by the triggering event. A row trigger is not
executed if the triggering event affects no rows.

16-10 Copyright © Oracle Corporation, 2001. All rights reserved.

DML Trigger Components

Trigger body: What action should the trigger perform?

The trigger body is a PL/SQL block or a call to a
procedure.

16-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Firing Sequence

Triggering action
BEFORE statement
trigger

BEFORE row trigger
AFTER row trigger

AFTER statement trigger

DML statement

Use the following firing sequence for a trigger on a
table, when a single row is manipulated:

INSERT INTO departments (department_id,
department_name, location_id)

VALUES (400, 'CONSULTING', 2400);

…

16-12 Copyright © Oracle Corporation, 2001. All rights reserved.

UPDATE employees
SET salary = salary * 1.1
WHERE department_id = 30;

Firing Sequence

Use the following firing sequence for a trigger on a
table, when many rows are manipulated:

BEFOREBEFORE statement triggerstatement trigger

BEFOREBEFORE row triggerrow trigger
AFTERAFTER row triggerrow trigger......

BEFOREBEFORE row triggerrow trigger
AFTERAFTER row triggerrow trigger......

AFTERAFTER statement triggerstatement trigger

16-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Syntax for Creating
DML Statement Triggers

Syntax for Creating
DML Statement Triggers

CREATE [OR REPLACE] TRIGGER trigger_name
timing

event1 [OR event2 OR event3]
ON table_name

trigger_body

Note: Trigger names must be unique with respect to
other triggers in the same schema.

Syntax:

16-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating DML Statement TriggersCreating DML Statement Triggers

CREATE OR REPLACE TRIGGER secure_emp
BEFORE INSERT ON employees
BEGIN
IF (TO_CHAR(SYSDATE,'DY') IN ('SAT','SUN')) OR

(TO_CHAR(SYSDATE,'HH24:MI')
NOT BETWEEN '08:00' AND '18:00')

THEN RAISE_APPLICATION_ERROR (-20500,'You may
insert into EMPLOYEES table only

during business hours.');
END IF;

END;
/

Example:

16-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Testing SECURE_EMPTesting SECURE_EMP

INSERT INTO employees (employee_id, last_name,
first_name, email, hire_date,
job_id, salary, department_id)

VALUES (300, 'Smith', 'Rob', 'RSMITH', SYSDATE,
'IT_PROG', 4500, 60);

16-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Using Conditional PredicatesUsing Conditional Predicates

CREATE OR REPLACE TRIGGER secure_emp
BEFORE INSERT OR UPDATE OR DELETE ON employees
BEGIN
IF (TO_CHAR (SYSDATE,'DY') IN ('SAT','SUN')) OR

(TO_CHAR (SYSDATE, 'HH24') NOT BETWEEN '08' AND '18')
THEN
IF DELETING THEN

RAISE_APPLICATION_ERROR (-20502,'You may delete from
EMPLOYEES table only during business hours.');

ELSIF INSERTING THEN
RAISE_APPLICATION_ERROR (-20500,'You may insert into

EMPLOYEES table only during business hours.');
ELSIF UPDATING ('SALARY') THEN

RAISE_APPLICATION_ERROR (-20503,'You may update
SALARY only during business hours.');

ELSE
RAISE_APPLICATION_ERROR (-20504,'You may update

EMPLOYEES table only during normal hours.');
END IF;
END IF;

END;

16-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a DML Row TriggerCreating a DML Row Trigger

CREATE [OR REPLACE] TRIGGER trigger_name
timing

event1 [OR event2 OR event3]
ON table_name

[REFERENCING OLD AS old | NEW AS new]
FOR EACH ROW
[WHEN (condition)]

trigger_body

Syntax:

16-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating DML Row TriggersCreating DML Row Triggers

CREATE OR REPLACE TRIGGER restrict_salary
BEFORE INSERT OR UPDATE OF salary ON employees

FOR EACH ROW
BEGIN
IF NOT (:NEW.job_id IN ('AD_PRES', 'AD_VP'))

AND :NEW.salary > 15000
THEN

RAISE_APPLICATION_ERROR (-20202,'Employee
cannot earn this amount');

END IF;
END;
/

16-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Using OLD and NEW QualifiersUsing OLD and NEW Qualifiers

CREATE OR REPLACE TRIGGER audit_emp_values
AFTER DELETE OR INSERT OR UPDATE ON employees
FOR EACH ROW
BEGIN
INSERT INTO audit_emp_table (user_name, timestamp,

id, old_last_name, new_last_name, old_title,
new_title, old_salary, new_salary)

VALUES (USER, SYSDATE, :OLD.employee_id,
:OLD.last_name, :NEW.last_name, :OLD.job_id,
:NEW.job_id, :OLD.salary, :NEW.salary);

END;
/

16-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Using OLD and NEW Qualifiers:
Example Using Audit_Emp_Table

Using OLD and NEW Qualifiers:
Example Using Audit_Emp_Table

INSERT INTO employees
(employee_id, last_name, job_id, salary, ...)

VALUES (999, 'Temp emp', 'SA_REP', 1000, ...);

UPDATE employees
SET salary = 2000, last_name = 'Smith'
WHERE employee_id = 999;

SELECT user_name, timestamp, ... FROM audit_emp_table

16-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Restricting a Row TriggerRestricting a Row Trigger

CREATE OR REPLACE TRIGGER derive_commission_pct
BEFORE INSERT OR UPDATE OF salary ON employees
FOR EACH ROW
WHEN (NEW.job_id = 'SA_REP')

BEGIN
IF INSERTING

THEN :NEW.commission_pct := 0;
ELSIF :OLD.commission_pct IS NULL

THEN :NEW.commission_pct := 0;
ELSE

:NEW.commission_pct := :OLD.commission_pct + 0.05;
END IF;

END;
/

16-22 Copyright © Oracle Corporation, 2001. All rights reserved.

INSTEAD OF Triggers

Application

INSERT INTO my_view
. . .;

MY_VIEW

INSTEAD OF
Trigger

INSERT
TABLE1

UPDATE
TABLE2

16-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating an INSTEAD OF TriggerCreating an INSTEAD OF Trigger

CREATE [OR REPLACE] TRIGGER trigger_name
INSTEAD OF

event1 [OR event2 OR event3]
ON view_name

[REFERENCING OLD AS old | NEW AS new]
[FOR EACH ROW]
trigger_body

Syntax:

16-26 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating an INSTEAD OF Trigger

INSERT INTO emp_details(employee_id, ...)
VALUES(9001,'ABBOTT',3000,10,'abbott.mail.com','HR_MAN');

INSERT into EMP_DETAILS that is based on EMPLOYEES and
DEPARTMENTS tables

INSTEAD OF INSERT
into EMP_DETAILS

…

1

16-27 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating an INSTEAD OF Trigger

INSERT INTO emp_details(employee_id, ...)
VALUES(9001,'ABBOTT',3000,10,'abbott.mail.com','HR_MAN');

INSERT into EMP_DETAILS that is based on EMPLOYEES and
DEPARTMENTS tables

INSTEAD OF INSERT
into EMP_DETAILS

INSERT into
NEW_EMPS

UPDATE
NEW_DEPTS

…

……

1

2 3

16-28 Copyright © Oracle Corporation, 2001. All rights reserved.

Differentiating Between Database Triggers
and Stored Procedures

Differentiating Between Database Triggers
and Stored Procedures

Triggers

Defined with CREATE TRIGGER

Data dictionary contains source
code in USER_TRIGGERS

Implicitly invoked

COMMIT, SAVEPOINT, and
ROLLBACK are not allowed

Procedures

Defined with CREATE PROCEDURE

Data dictionary contains source code
in USER_SOURCE

Explicitly invoked

COMMIT, SAVEPOINT, and ROLLBACK
are allowed

16-29 Copyright © Oracle Corporation, 2001. All rights reserved.

Differentiating Between Database Triggers
and Form Builder Triggers

INSERT INTO EMPLOYEES
. . .;

EMPLOYEES table CHECK_SAL trigger

BEFORE
INSERT
row

…

16-30 Copyright © Oracle Corporation, 2001. All rights reserved.

ALTER TRIGGER trigger_name DISABLE | ENABLE

Managing TriggersManaging Triggers

Disable or reenable a database trigger:

ALTER TABLE table_name DISABLE | ENABLE ALL TRIGGERS
Disable or reenable all triggers for a table:Disable or reenable all triggers for a table:

ALTER TRIGGER trigger_name COMPILE
Recompile a trigger for a table:Recompile a trigger for a table:

16-31 Copyright © Oracle Corporation, 2001. All rights reserved.

DROP TRIGGER SyntaxDROP TRIGGER Syntax

To remove a trigger from the database, use the DROP
TRIGGER syntax:
To remove a trigger from the database, use the DROP
TRIGGER syntax:

DROP TRIGGER trigger_name;

DROP TRIGGER secure_emp;

Example:Example:

Note: All triggers on a table are dropped when the
table is dropped.

Note: All triggers on a table are dropped when the
table is dropped.

16-32 Copyright © Oracle Corporation, 2001. All rights reserved.

Trigger Test Cases

• Test each triggering data operation, as well as
nontriggering data operations.

• Test each case of the WHEN clause.

• Cause the trigger to fire directly from a basic data
operation, as well as indirectly from a procedure.

• Test the effect of the trigger upon other triggers.

• Test the effect of other triggers upon the trigger.

16-33 Copyright © Oracle Corporation, 2001. All rights reserved.

Trigger Execution Model
and Constraint Checking
Trigger Execution Model
and Constraint Checking

1. Execute all BEFORE STATEMENT triggers.

2. Loop for each row affected:
a. Execute all BEFORE ROW triggers.

b. Execute all AFTER ROW triggers.

3. Execute the DML statement and perform integrity
constraint checking.

4. Execute all AFTER STATEMENT triggers.

1. Execute all BEFORE STATEMENT triggers.

2. Loop for each row affected:
a. Execute all BEFORE ROW triggers.

b. Execute all AFTER ROW triggers.

3. Execute the DML statement and perform integrity
constraint checking.

4. Execute all AFTER STATEMENT triggers.

16-34 Copyright © Oracle Corporation, 2001. All rights reserved.

Trigger Execution Model and Constraint
Checking: Example

Trigger Execution Model and Constraint
Checking: Example

CREATE OR REPLACE TRIGGER constr_emp_trig
AFTER UPDATE ON employees
FOR EACH ROW

BEGIN
INSERT INTO departments

VALUES (999, 'dept999', 140, 2400);
END;
/

UPDATE employees SET department_id = 999
WHERE employee_id = 170;
-- Successful after trigger is fired

UPDATE employees SET department_id = 999
WHERE employee_id = 170;
-- Integrity constraint violation error

16-35 Copyright © Oracle Corporation, 2001. All rights reserved.

VAR_PACK
package

AUDIT_EMP_TRIG
FOR EACH ROW
Increment variables

2

A Sample Demonstration for Triggers
Using Package Constructs

AUDIT_EMP_TAB
AFTER STATEMENT
Copy and then reset
variables

3

DML into
EMPLOYEES table

1

AUDIT_TABLE
4

16-36 Copyright © Oracle Corporation, 2001. All rights reserved.

After Row and After Statement Triggers

CREATE OR REPLACE TRIGGER audit_emp_trig
AFTER UPDATE or INSERT or DELETE on EMPLOYEES
FOR EACH ROW
BEGIN
IF DELETING THEN var_pack.set_g_del(1);
ELSIF INSERTING THEN var_pack.set_g_ins(1);
ELSIF UPDATING ('SALARY')

THEN var_pack.set_g_up_sal(1);
ELSE var_pack.set_g_upd(1);
END IF;

END audit_emp_trig;
/

CREATE OR REPLACE TRIGGER audit_emp_tab
AFTER UPDATE or INSERT or DELETE on employees
BEGIN
audit_emp;

END audit_emp_tab;
/

16-37 Copyright © Oracle Corporation, 2001. All rights reserved.

Demonstration: VAR_PACK Package
Specification

Demonstration: VAR_PACK Package
Specification

CREATE OR REPLACE PACKAGE var_pack
IS
-- these functions are used to return the
-- values of package variables
FUNCTION g_del RETURN NUMBER;
FUNCTION g_ins RETURN NUMBER;
FUNCTION g_upd RETURN NUMBER;
FUNCTION g_up_sal RETURN NUMBER;

-- these procedures are used to modify the
-- values of the package variables
PROCEDURE set_g_del (p_val IN NUMBER);
PROCEDURE set_g_ins (p_val IN NUMBER);
PROCEDURE set_g_upd (p_val IN NUMBER);
PROCEDURE set_g_up_sal (p_val IN NUMBER);

END var_pack;
/

var_pack.sql

16-39 Copyright © Oracle Corporation, 2001. All rights reserved.

CREATE OR REPLACE PROCEDURE audit_emp IS
v_del NUMBER := var_pack.g_del;
v_ins NUMBER := var_pack.g_ins;
v_upd NUMBER := var_pack.g_upd;
v_up_sal NUMBER := var_pack.g_up_sal;

BEGIN
IF v_del + v_ins + v_upd != 0 THEN

UPDATE audit_table SET
del = del + v_del, ins = ins + v_ins,
upd = upd + v_upd

WHERE user_name=USER AND tablename='EMPLOYEES'
AND column_name IS NULL;

END IF;
IF v_up_sal != 0 THEN

UPDATE audit_table SET upd = upd + v_up_sal
WHERE user_name=USER AND tablename='EMPLOYEES'
AND column_name = 'SALARY';

END IF;
-- resetting global variables in package VAR_PACK

var_pack.set_g_del (0); var_pack.set_g_ins (0);
var_pack.set_g_upd (0); var_pack.set_g_up_sal (0);

END audit_emp;

Demonstration: Using the
AUDIT_EMP Procedure

Demonstration: Using the
AUDIT_EMP Procedure

16-40 Copyright © Oracle Corporation, 2001. All rights reserved.

Procedure Package Trigger

xxxxxxxxxxxxxxxxxx
vvvvvvvvvvvvvvvvvv
xxxxxxxxxxxxxxxxxx
vvvvvvvvvvvvvvvvvv
xxxxxxxxxxxxxxxxxx
vvvvvvvvvvvvvvvvvv
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
vvvvvvvvvvvvvvvvvv
xxxxxxxxxxxxxxxxxx
vvvvvvvvvvvvvvvvvv
xxxxxxxxxxxxxxxxxx
vvvvvvvvvvvvvvvvvv
xxxxxxxxxxxxxxxxxx

Procedure A
declaration

Procedure B
definition

Summary

Procedure A
definition

Local
variable

16-41 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 16 OverviewPractice 16 Overview

This practice covers the following topics:

• Creating statement and row triggers

• Creating advanced triggers to add to the
capabilities of the Oracle database

This practice covers the following topics:

• Creating statement and row triggers

• Creating advanced triggers to add to the
capabilities of the Oracle database

17
Copyright © Oracle Corporation, 2001. All rights reserved.

More Trigger Concepts

17-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

• Create additional database triggers

• Explain the rules governing triggers

• Implement triggers

17-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating Database TriggersCreating Database Triggers

• Triggering user event:
– CREATE, ALTER, or DROP

– Logging on or off

• Triggering database or system event:
– Shutting down or starting up the database

– A specific error (or any error) being raised

• Triggering user event:
– CREATE, ALTER, or DROP

– Logging on or off

• Triggering database or system event:
– Shutting down or starting up the database

– A specific error (or any error) being raised

17-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating Triggers on DDL StatementsCreating Triggers on DDL Statements

CREATE [OR REPLACE] TRIGGER trigger_name
timing

[ddl_event1 [OR ddl_event2 OR ...]]
ON {DATABASE|SCHEMA}

trigger_body

Syntax:

17-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating Triggers on System EventsCreating Triggers on System Events

CREATE [OR REPLACE] TRIGGER trigger_name
timing

[database_event1 [OR database_event2 OR ...]]
ON {DATABASE|SCHEMA}

trigger_body

17-6 Copyright © Oracle Corporation, 2001. All rights reserved.

LOGON and LOGOFF Trigger Example LOGON and LOGOFF Trigger Example

CREATE OR REPLACE TRIGGER logon_trig
AFTER LOGON ON SCHEMA
BEGIN
INSERT INTO log_trig_table(user_id, log_date, action)
VALUES (USER, SYSDATE, 'Logging on');
END;
/

CREATE OR REPLACE TRIGGER logoff_trig
BEFORE LOGOFF ON SCHEMA
BEGIN
INSERT INTO log_trig_table(user_id, log_date, action)
VALUES (USER, SYSDATE, 'Logging off');
END;
/

17-7 Copyright © Oracle Corporation, 2001. All rights reserved.

CALL StatementsCALL Statements

CREATE OR REPLACE TRIGGER log_employee
BEFORE INSERT ON EMPLOYEES
CALL log_execution

/

CREATE [OR REPLACE] TRIGGER trigger_name
timing

event1 [OR event2 OR event3]
ON table_name

[REFERENCING OLD AS old | NEW AS new]
[FOR EACH ROW]
[WHEN condition]

CALL procedure_name

17-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Trigger event

UPDATE employees
SET salary = 3400
WHERE last_name = 'Stiles';

EMPLOYEES table
Failure

Triggered table/
mutating table

BEFORE UPDATE row

CHECK_SALARY
trigger

Reading Data
from a Mutating Table

…
… 3400

17-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Mutating Table: ExampleMutating Table: Example

CREATE OR REPLACE TRIGGER check_salary
BEFORE INSERT OR UPDATE OF salary, job_id
ON employees
FOR EACH ROW
WHEN (NEW.job_id <> 'AD_PRES')

DECLARE
v_minsalary employees.salary%TYPE;
v_maxsalary employees.salary%TYPE;

BEGIN
SELECT MIN(salary), MAX(salary)
INTO v_minsalary, v_maxsalary
FROM employees
WHERE job_id = :NEW.job_id;

IF :NEW.salary < v_minsalary OR
:NEW.salary > v_maxsalary THEN
RAISE_APPLICATION_ERROR(-20505,'Out of range');

END IF;
END;
/

17-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Mutating Table: ExampleMutating Table: Example

UPDATE employees
SET salary = 3400
WHERE last_name = 'Stiles';

17-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Implementing TriggersImplementing Triggers

You can use trigger for:You can use trigger for:

•• SecuritySecurity

• Auditing

• Data integrity

• Referential integrity

• Table replication

• Computing derived data automatically

• Event logging

17-12 Copyright © Oracle Corporation, 2001. All rights reserved.

GRANT SELECT, INSERT, UPDATE, DELETE
ON employees
TO clerk; -- database role
GRANT clerk TO scott;

Controlling Security Within
the Server

Controlling Security Within
the Server

17-13 Copyright © Oracle Corporation, 2001. All rights reserved.

CREATE OR REPLACE TRIGGER secure_emp
BEFORE INSERT OR UPDATE OR DELETE ON employees

DECLARE
v_dummy VARCHAR2(1);

BEGIN
IF (TO_CHAR (SYSDATE, 'DY') IN ('SAT','SUN'))
THEN RAISE_APPLICATION_ERROR (-20506,'You may only

change data during normal business hours.');
END IF;
SELECT COUNT(*) INTO v_dummy FROM holiday
WHERE holiday_date = TRUNC (SYSDATE);
IF v_dummy > 0 THEN RAISE_APPLICATION_ERROR(-20507,

'You may not change data on a holiday.');
END IF;
END;
/

Controlling Security
with a Database Trigger

17-14 Copyright © Oracle Corporation, 2001. All rights reserved.

AUDIT INSERT, UPDATE, DELETE
ON departments
BY ACCESS

WHENEVER SUCCESSFUL;

Using the Server Facility to
Audit Data Operations

The Oracle server stores the audit information in a
data dictionary table or operating system file.

17-15 Copyright © Oracle Corporation, 2001. All rights reserved.

CREATE OR REPLACE TRIGGER audit_emp_values
AFTER DELETE OR INSERT OR UPDATE ON employees
FOR EACH ROW

BEGIN
IF (audit_emp_package.g_reason IS NULL) THEN

RAISE_APPLICATION_ERROR (-20059, 'Specify a reason
for the data operation through the procedure SET_REASON
of the AUDIT_EMP_PACKAGE before proceeding.');

ELSE
INSERT INTO audit_emp_table (user_name, timestamp, id,

old_last_name, new_last_name, old_title, new_title,
old_salary, new_salary, comments)

VALUES (USER, SYSDATE, :OLD.employee_id, :OLD.last_name,
:NEW.last_name, :OLD.job_id, :NEW.job_id, :OLD.salary,
:NEW.salary, audit_emp_package.g_reason);

END IF;
END;
CREATE OR REPLACE TRIGGER cleanup_audit_emp
AFTER INSERT OR UPDATE OR DELETE ON employees

BEGIN
audit_emp_package.g_reason := NULL;

END;

Auditing by Using a Trigger

17-16 Copyright © Oracle Corporation, 2001. All rights reserved.

ALTER TABLE employees ADD
CONSTRAINT ck_salary CHECK (salary >= 500);

Enforcing Data Integrity
Within the Server

17-17 Copyright © Oracle Corporation, 2001. All rights reserved.

CREATE OR REPLACE TRIGGER check_salary
BEFORE UPDATE OF salary ON employees
FOR EACH ROW
WHEN (NEW.salary < OLD.salary)

BEGIN
RAISE_APPLICATION_ERROR (-20508,

'Do not decrease salary.');
END;
/

Protecting Data Integrity
with a Trigger

Protecting Data Integrity
with a Trigger

17-18 Copyright © Oracle Corporation, 2001. All rights reserved.

ALTER TABLE employees
ADD CONSTRAINT emp_deptno_fk
FOREIGN KEY (department_id)

REFERENCES departments(department_id)
ON DELETE CASCADE;

Enforcing Referential Integrity
Within the Server

Enforcing Referential Integrity
Within the Server

17-19 Copyright © Oracle Corporation, 2001. All rights reserved.

CREATE OR REPLACE TRIGGER cascade_updates
AFTER UPDATE OF department_id ON departments
FOR EACH ROW
BEGIN
UPDATE employees
SET employees.department_id=:NEW.department_id
WHERE employees.department_id=:OLD.department_id;
UPDATE job_history
SET department_id=:NEW.department_id
WHERE department_id=:OLD.department_id;

END;
/

Protecting Referential Integrity
with a Trigger

Protecting Referential Integrity
with a Trigger

17-20 Copyright © Oracle Corporation, 2001. All rights reserved.

CREATE SNAPSHOT emp_copy AS
SELECT * FROM employees@ny;

Replicating a Table
Within the Server

Replicating a Table
Within the Server

17-21 Copyright © Oracle Corporation, 2001. All rights reserved.

CREATE OR REPLACE TRIGGER emp_replica
BEFORE INSERT OR UPDATE ON employees
FOR EACH ROW

BEGIN /*Only proceed if user initiates a data operation,
NOT through the cascading trigger.*/

IF INSERTING THEN
IF :NEW.flag IS NULL THEN

INSERT INTO employees@sf
VALUES(:new.employee_id, :new.last_name,..., 'B');
:NEW.flag := 'A';

END IF;
ELSE /* Updating. */
IF :NEW.flag = :OLD.flag THEN
UPDATE employees@sf
SET ename = :NEW.last_name, ...,

flag = :NEW.flag
WHERE employee_id = :NEW.employee_id;

END IF;
IF :OLD.flag = 'A' THEN :NEW.flag := 'B';
ELSE :NEW.flag := 'A';
END IF;

END IF;
END;

Replicating a Table with a Trigger

17-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Computing Derived Data Within the ServerComputing Derived Data Within the Server

UPDATE departments
SET total_sal=(SELECT SUM(salary)

FROM employees
WHERE employees.department_id =

departments.department_id);

17-23 Copyright © Oracle Corporation, 2001. All rights reserved.

CREATE OR REPLACE PROCEDURE increment_salary
(p_id IN departments.department_id%TYPE,
p_salary IN departments.total_sal%TYPE)

IS
BEGIN

UPDATE departments
SET total_sal = NVL (total_sal, 0)+ p_salary
WHERE department_id = p_id;

END increment_salary;

CREATE OR REPLACE TRIGGER compute_salary
AFTER INSERT OR UPDATE OF salary OR DELETE ON employees
FOR EACH ROW
BEGIN
IF DELETING THEN

increment_salary(:OLD.department_id,(-1*:OLD.salary));
ELSIF UPDATING THEN
increment_salary(:NEW.department_id,(:NEW.salary-:OLD.salary));
ELSE increment_salary(:NEW.department_id,:NEW.salary);--INSERT
END IF;

END;

Computing Derived Values with a Trigger

17-24 Copyright © Oracle Corporation, 2001. All rights reserved.

CREATE OR REPLACE TRIGGER notify_reorder_rep
BEFORE UPDATE OF quantity_on_hand, reorder_point
ON inventories FOR EACH ROW
DECLARE
v_descrip product_descriptions.product_description%TYPE;
v_msg_text VARCHAR2(2000);
stat_send number(1);

BEGIN
IF :NEW.quantity_on_hand <= :NEW.reorder_point THEN
SELECT product_description INTO v_descrip
FROM product_descriptions
WHERE product_id = :NEW.product_id;
v_msg_text := 'ALERT: INVENTORY LOW ORDER:'||CHR(10)||
...'Yours,' ||CHR(10) ||user || '.'|| CHR(10)|| CHR(10);

ELSIF
:OLD.quantity_on_hand < :NEW.quantity_on_hand THEN NULL;

ELSE
v_msg_text := 'Product #'||... CHR(10);

END IF;
DBMS_PIPE.PACK_MESSAGE(v_msg_text);
stat_send := DBMS_PIPE.SEND_MESSAGE('INV_PIPE');

END;

Logging Events with a Trigger

17-26 Copyright © Oracle Corporation, 2001. All rights reserved.

Benefits of Database Triggers

• Improved data security:

– Provide enhanced and complex security
checks

– Provide enhanced and complex auditing

• Improved data integrity:

– Enforce dynamic data integrity constraints

– Enforce complex referential integrity
constraints

– Ensure that related operations are performed
together implicitly

17-27 Copyright © Oracle Corporation, 2001. All rights reserved.

Managing TriggersManaging Triggers

The following system privileges are required to The following system privileges are required to
manage triggers:manage triggers:
• The CREATE/ALTER/DROP (ANY) TRIGGER

privilege enables you to create a trigger in any
schema

• The ADMINISTER DATABASE TRIGGER privilege
enables you to create a trigger on DATABASE

• The EXECUTE privilege (if your trigger refers to any
objects that are not in your schema)

Note: Statements in the trigger body operate under
the privilege of the trigger owner, not the trigger user.

• The CREATE/ALTER/DROP (ANY) TRIGGER
privilege enables you to create a trigger in any
schema

• The ADMINISTER DATABASE TRIGGER privilege
enables you to create a trigger on DATABASE

• The EXECUTE privilege (if your trigger refers to any
objects that are not in your schema)

Note: Statements in the trigger body operate under
the privilege of the trigger owner, not the trigger user.

17-28 Copyright © Oracle Corporation, 2001. All rights reserved.

Viewing Trigger Information

You can view the following trigger information:
• USER_OBJECTS data dictionary view: object

information
• USER_TRIGGERS data dictionary view: the text of

the trigger
• USER_ERRORS data dictionary view: PL/SQL syntax

errors (compilation errors) of the trigger

17-29 Copyright © Oracle Corporation, 2001. All rights reserved.

Column

TRIGGER_NAME

TRIGGER_TYPE

TRIGGERING_EVENT

TABLE_NAME

REFERENCING_NAMES

WHEN_CLAUSE

STATUS

TRIGGER_BODY

Column Description

Name of the trigger

The type is BEFORE, AFTER, INSTEAD OF

The DML operation firing the trigger

Name of the database table

Name used for :OLD and :NEW

The when_clause used

The status of the trigger

The action to take

Using USER_TRIGGERS

Abridged column listAbridged column list**

**

17-30 Copyright © Oracle Corporation, 2001. All rights reserved.

Listing the Code of TriggersListing the Code of Triggers

SELECT trigger_name, trigger_type, triggering_event,
table_name, referencing_names,
status, trigger_body

FROM user_triggers
WHERE trigger_name = 'RESTRICT_SALARY';

17-31 Copyright © Oracle Corporation, 2001. All rights reserved.

SummarySummary

In this lesson, you should have learned how to:

• Use advanced database triggers

• List mutating and constraining rules for triggers

• Describe the real-world application of triggers

• Manage triggers

• View trigger information

In this lesson, you should have learned how to:

• Use advanced database triggers

• List mutating and constraining rules for triggers

• Describe the real-world application of triggers

• Manage triggers

• View trigger information

17-32 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 17 OverviewPractice 17 Overview

This practice covers creating advanced triggers to
add to the capabilities of the Oracle database.
This practice covers creating advanced triggers to
add to the capabilities of the Oracle database.

18
Copyright © Oracle Corporation, 2001. All rights reserved.

Managing Dependencies

18-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

• Track procedural dependencies

• Predict the effect of changing a database object
upon stored procedures and functions

• Manage procedural dependencies

18-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Understanding DependenciesUnderstanding Dependencies

Table

View

Database Trigger

Procedure

Function

Package Body

Package Specification

User-Defined Object
and Collection Types

Function

Package Specification

Procedure

Sequence

Synonym

Table

View

User-Defined Object
and Collection Types

Referenced ObjectsReferenced ObjectsDependent ObjectsDependent Objects

18-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Dependencies

xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv

Procedure
View or

procedure

Direct
dependency

Dependent

Referenced

Indirect
dependency

Referenced

Direct
dependency

Dependent

Table

Referenced

18-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Local Dependencies

xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
vvvvvvvvvvvvvv

Procedure View

Local references

Procedure Table
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv

Direct local
dependency

18-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Local Dependencies

xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
vvvvvvvvvvvvvv

Procedure View

Local references

Procedure Table
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv

Direct local
dependency

Definition
change

INVALIDINVALIDINVALID

The Oracle server implicitly recompiles any INVALID
object when the object is next called.

18-7 Copyright © Oracle Corporation, 2001. All rights reserved.

xxxxxxxxxxxxxxxxxxxxx
vvvvvvvvvvvvvvvvvvvvv
vvvvvvvvvvvvvvvvv
vvvvvvvvvvvvvvvvvvvvv
vvvvvvvvvvvvvvvvvvvvv
vvvvvvxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
vvvvvvvvvvvvvvvvvvvvv

xxxxxxxxxxxxxxxxxxxxx
vvvvvvvvvvvvvvvvvvvvv
vvvvvvvvvvvvvvvvv
vvvvvvvvvvvvvvvvvvvvv
vvvvvvvvvvvvvvvvvvvvv
vvvvvvxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
vvvvvvvvvvvvvvvvvvvvv

ADD_EMPADD_EMP
procedureprocedure

QUERY_EMPQUERY_EMP
procedureprocedure

EMPLOYEESEMPLOYEES tabletable

EMP_VWEMP_VW viewview

A Scenario of Local Dependencies

…

…

18-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Displaying Direct Dependencies by Using
USER_DEPENDENCIES

SELECT name, type, referenced_name, referenced_type
FROM user_dependencies
WHERE referenced_name IN ('EMPLOYEES','EMP_VW');

…
…

18-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Displaying Direct and Indirect
Dependencies

1. Run the script utldtree.sql that creates the
objects that enable you to display the direct and
indirect dependencies.

2. Execute the DEPTREE_FILL procedure.

EXECUTE deptree_fill('TABLE','SCOTT','EMPLOYEES')

18-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Displaying DependenciesDisplaying Dependencies

DEPTREE View

SELECT nested_level, type, name
FROM deptree
ORDER BY seq#;

…

…

18-11 Copyright © Oracle Corporation, 2001. All rights reserved.

EMPLOYEESEMPLOYEES tabletable

REDUCE_SALREDUCE_SAL
procedureprocedure

RAISE_SALRAISE_SAL
procedureprocedure

Another Scenario of Local Dependencies

xxxxxxxxxxxxxxxxxxxxx
vvvvvvvvvvvvvvvvvvvvv
vvvvvvvvvvvvvvvvv
vvvvvvvvvvvvvvvvvvvvv
vvvvvvvvvvvvvvvvvvvvv
vvvvvvxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
vvvvvvvvvvvvvvvvvvvvv

xxxxxxxxxxxxxxxxxxxxx
vvvvvvvvvvvvvvvvvvvvv
vvvvvvvvvvvvvvvvv
vvvvvvvvvvvvvvvvvvvvv
vvvvvvvvvvvvvvvvvvvvv
vvvvvvxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
vvvvvvvvvvvvvvvvvvvvv

…

18-12 Copyright © Oracle Corporation, 2001. All rights reserved.

QUERY_EMPQUERY_EMP
procedureprocedure EMPLOYEESEMPLOYEES public synonympublic synonym

XX

A Scenario of Local Naming
Dependencies

xxxxxxxxxxxxxxxxxxxxx
vvvvvvvvvvvvvvvvvvvvv
vvvvvvvvvvvvvvvvv
vvvvvvvvvvvvvvvvvvvvv
vvvvvvvvvvvvvvvvvvvvv
vvvvvvxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
vvvvvvvvvvvvvvvvvvvvv

EMPLOYEESEMPLOYEES
tabletable

…

…

18-13 Copyright © Oracle Corporation, 2001. All rights reserved.

xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv

Procedure ViewProcedure Table

vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv

Direct local
dependency

Direct remote
dependency

Understanding Remote Dependencies

Local and remote references

Network

18-14 Copyright © Oracle Corporation, 2001. All rights reserved.

xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv

Procedure ViewProcedure Table

vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv

Direct local
dependency

Direct remote
dependency

Understanding Remote Dependencies

Local and remote references

Definition
change

INVALIDINVALIDVALID

Network

18-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Concepts of Remote Dependencies

Remote dependencies are governed by the mode
chosen by the user:

• TIMESTAMP checking

• SIGNATURE checking

18-16 Copyright © Oracle Corporation, 2001. All rights reserved.

REMOTE_DEPENDENCIES_MODE ParameterREMOTE_DEPENDENCIES_MODE Parameter

Setting REMOTE_DEPENDENCIES_MODE:
• As an init.ora parameter

REMOTE_DEPENDENCIES_MODE = value

• At the system level
ALTER SYSTEM SET
REMOTE_DEPENDENCIES_MODE = value

• At the session level

ALTER SESSION SET
REMOTE_DEPENDENCIES_MODE = value

Setting REMOTE_DEPENDENCIES_MODE:
• As an init.ora parameter

REMOTE_DEPENDENCIES_MODE = value

• At the system level
ALTER SYSTEM SET
REMOTE_DEPENDENCIES_MODE = value

• At the session level

ALTER SESSION SET
REMOTE_DEPENDENCIES_MODE = value

18-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Remote Dependencies and
Time Stamp Mode

xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv

Procedure ViewProcedure Table

vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv

Network

Network

18-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Remote Dependencies and
Time Stamp Mode

xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv

Procedure ViewProcedure Table

vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv

Network

Network Definition
change

INVALIDINVALIDVALID

18-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Remote Procedure B Compiles
at 8:00 a.m.

Valid

Remote procedure B

Compiles

18-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Local Procedure A Compiles
at 9:00 a.m.

Local Procedure A Compiles
at 9:00 a.m.

Local procedure ALocal procedure A

ValidValid

Remote procedure BRemote procedure B

Time stampTime stamp
of Bof B

ValidValid

Time stamp Time stamp
of A of A

RecordRecord
Time stampTime stamp
of B of B

18-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Execute Procedure AExecute Procedure A

Local procedure A

Valid

Remote procedure B

Time stamp
of B

Valid

Time stamp
of A

Time stamp
of B

Time stamp
comparison

Execute B

18-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Remote Procedure B Recompiled
at 11:00 a.m.

Valid

Remote procedure B

Compiles

18-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Execute Procedure AExecute Procedure A

Local procedure A

Valid

Remote procedure B

Time stamp
of B

Valid

Time stamp
of A

Time stamp
of B

Time stamp
comparison

ERROR

Invalid

18-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Signature Mode

• The signature of a procedure is:

– The name of the procedure

– The datatypes of the parameters

– The modes of the parameters

• The signature of the remote procedure is saved in
the local procedure.

• When executing a dependent procedure, the
signature of the referenced remote procedure is
compared.

18-25 Copyright © Oracle Corporation, 2001. All rights reserved.

Recompiling a PL/SQL
Program Unit

Recompiling a PL/SQL
Program Unit

Recompilation:

• Is handled automatically through implicit run-time
recompilation

• Is handled through explicit recompilation with the
ALTER statement

Recompilation:

• Is handled automatically through implicit run-time
recompilation

• Is handled through explicit recompilation with the
ALTER statement

ALTER PROCEDURE [SCHEMA.]procedure_name COMPILE;

ALTER FUNCTION [SCHEMA.]function_name COMPILE;

ALTER PACKAGE [SCHEMA.]package_name COMPILE [PACKAGE];
ALTER PACKAGE [SCHEMA.]package_name COMPILE BODY;

ALTER TRIGGER trigger_name [COMPILE[DEBUG]];

18-26 Copyright © Oracle Corporation, 2001. All rights reserved.

Unsuccessful RecompilationUnsuccessful Recompilation

Recompiling dependent procedures and functions is
unsuccessful when:

• The referenced object is dropped or renamed

• The data type of the referenced column is changed

• The referenced column is dropped

• A referenced view is replaced by a view with
different columns

• The parameter list of a referenced procedure is
modified

Recompiling dependent procedures and functions is
unsuccessful when:

• The referenced object is dropped or renamed

• The data type of the referenced column is changed

• The referenced column is dropped

• A referenced view is replaced by a view with
different columns

• The parameter list of a referenced procedure is
modified

18-27 Copyright © Oracle Corporation, 2001. All rights reserved.

Successful RecompilationSuccessful Recompilation

Recompiling dependent procedures and functions is
successful if:

• The referenced table has new columns

• The data type of referenced columns has not
changed

• A private table is dropped, but a public table,
having the same name and structure, exists

• The PL/SQL body of a referenced procedure has
been modified and recompiled successfully

Recompiling dependent procedures and functions is
successful if:

• The referenced table has new columns

• The data type of referenced columns has not
changed

• A private table is dropped, but a public table,
having the same name and structure, exists

• The PL/SQL body of a referenced procedure has
been modified and recompiled successfully

18-28 Copyright © Oracle Corporation, 2001. All rights reserved.

Recompilation of Procedures

Minimize dependency failures by:
• Declaring records by using the %ROWTYPE attribute

• Declaring variables with the %TYPE attribute

• Querying with the SELECT * notation

• Including a column list with INSERT statements

18-29 Copyright © Oracle Corporation, 2001. All rights reserved.

Packages and Dependencies

Procedure A
declaration

Package specification

Package body

Procedure A
definition

Stand-alone

procedure

Valid

Valid

Definition changed

18-30 Copyright © Oracle Corporation, 2001. All rights reserved.

Packages and DependenciesPackages and Dependencies

Procedure A
declaration

Package specification

Package body

Procedure A
definition

Stand-alone
procedure

Invalid

Valid

Definition
changed

18-31 Copyright © Oracle Corporation, 2001. All rights reserved.

SummarySummary

In this lesson, you should have learned how to:

• Keep track of dependent procedures

• Recompile procedures manually as soon as
possible after the definition of a database object
changes

In this lesson, you should have learned how to:

• Keep track of dependent procedures

• Recompile procedures manually as soon as
possible after the definition of a database object
changes

18-32 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 18 Overview

This practice covers the following topics:
• Using DEPTREE_FILL and IDEPTREE to view

dependencies

• Recompiling procedures, functions, and packages

C
Copyright © Oracle Corporation, 2001. All rights reserved.

Creating Program Units by Using
Procedure Builder

C-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this appendix, you should be able to
do the following:

• Describe the features of Oracle Procedure Builder

• Manage program units using the Object Navigator

• Create and compile program units using the
Program Unit Editor

• Invoke program units using the PL/SQL Interpreter

• Debug subprograms using the debugger

• Control execution of an interrupted PL/SQL
program unit

• Test possible solutions at run time

C-3 Copyright © Oracle Corporation, 2001. All rights reserved.

or DECLARE

BEGIN

EXCEPTION

END;

<header> IS|AS

Tools Constructs
Anonymous blocks

Application procedures or
functions

Application packages

Application triggers

Object types

Database Server
Constructs

Anonymous blocks
Stored procedures or

functions
Stored packages

Database triggers

Object types

PL/SQL Program Constructs

C-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Development Environments

• iSQL*Plus uses the PL/SQL engine in the Oracle
Server

• Oracle Procedure Builder uses the PL/SQL engine
in the client tool or in the Oracle Server. It
includes:
– A GUI development environment for PL/SQL code

– Built-in editors

– The ability to compile, test, and debug code

– Application partitioning that allows drag-and-drop
of program units between client and server

C-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Developing Procedures and Functions
Using iSQL*Plus

C-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Developing Procedures and Functions Using
Oracle Procedure Builder

C-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Components of
Procedure Builder

Component

Object Navigator

PL/SQL Interpreter

Program Unit Editor

Stored Program
Unit Editor

Database Trigger Editor

Function

Manages PL/SQL constructs;
performs debug actions

Debugs PL/SQL code; evaluates
PL/SQL code in real time

Creates and edits PL/SQL source
code

Creates and edits server-side
PL/SQL source code

Creates and edits database triggers

C-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Developing Program Units
and Stored Programs Units

Stored program units
in the Oracle server

Procedure
Builder

Program units
in a PL/SQL library

Server-side
code

Client-side
code

C-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Procedure Builder Components:
The Object Navigator

1
2

3 4

5

C-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Procedure Builder Components:
The Object Navigator

1

2

3

4

C-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Procedure Builder Components:
Objects of the Navigator

• Program Units
– Specification

– References

– Referenced By

• Libraries

• Attached Libraries

• Built-in Packages

• Debug Actions

• Stack

• Database Objects

C-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Developing Stored Procedures

Oracle
Procedure

Builder

Code

Compile and Save

Source code

Execute

P code

Oracle

C-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Procedure Builder Components:
The Program Unit Editor

1
2

3

C-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Procedure Builder Components:
The Stored Program Unit Editor

C-15 Copyright © Oracle Corporation, 2001. All rights reserved.

1

2

Creating a Client-Side
Program Unit

3

4

5

C-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a Server-Side
Program Unit

4

5

1

2

3

C-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Transferring Program Units Between
Client and Server

C-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Procedure Builder Components:
The PL/SQL Interpreter

1

2

3

C-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating Client-Side Program Units

C-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating Server-Side Program Units

CreateCreate
DeleteDelete

C-21 Copyright © Oracle Corporation, 2001. All rights reserved.

The DESCRIBE Command in
Procedure Builder

C-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Listing Code of Stored Program Units

Expand Expand
andand
Collapse Collapse
buttonsbuttons

Stored Stored
procedure procedure
iconicon

C-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Navigating Compilation Errors
in Procedure Builder

C-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Procedure Builder Built-in Package:
TEXT_IO

• The TEXT_IO package:

– Contains a procedure PUT_LINE, which writes
information to the PL/SQL Interpreter window

– Is used for client-side program units

• The TEXT_IO.PUT_LINE accepts one parameter

PL/SQL> TEXT_IO.PUT_LINE(1);
1
PL/SQL> TEXT_IO.PUT_LINE(1);
1

C-25 Copyright © Oracle Corporation, 2001. All rights reserved.

Executing Functions in
Procedure Builder: Example

Display the tax based on a specified value.

PL/SQL> .CREATE NUMBER x PRECISION 4
PL/SQL> :x := tax(1000);
PL/SQL> TEXT_IO.PUT_LINE (TO_CHAR(:x));
8080

Calling environmentCalling environment TAX functionfunction

v_valuev_value10001000

RETURN (computed value)RETURN (computed value)

C-26 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating Statement Triggers

C-27 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating Row Triggers

C-28 Copyright © Oracle Corporation, 2001. All rights reserved.

Removing Server-Side Program Units

Using Procedure Builder:

1. Connect to the database.

2. Expand the Database Objects node.

3. Expand the schema of the owner of the program unit.

4. Expand the Stored Program Units node.

5. Click the program unit that you want to drop.

6. Click Delete in the Object Navigator.

7. Click Yes to confirm.

C-29 Copyright © Oracle Corporation, 2001. All rights reserved.

Removing Client-Side
Program Units

Using Procedure Builder:

1. Expand the Program Units node.

2. Click the program unit that you want to remove.

3. Click Delete in the Object Navigator.

4. Click Yes to confirm.

C-30 Copyright © Oracle Corporation, 2001. All rights reserved.

Debugging Subprograms by Using
Procedure Builder

C-31 Copyright © Oracle Corporation, 2001. All rights reserved.

Listing Code in the Source Pane

1

2

3

C-32 Copyright © Oracle Corporation, 2001. All rights reserved.

1

2

Setting a Breakpoint

C-33 Copyright © Oracle Corporation, 2001. All rights reserved.

Debug Commands

Step Over

Step
Into

Step Out

Reset

Go

C-34 Copyright © Oracle Corporation, 2001. All rights reserved.

Stepping through Code

1

2

3

C-35 Copyright © Oracle Corporation, 2001. All rights reserved.

Changing a Value

1

2

3

4

C-36 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

In this appendix, you should have learned how to:

• Use Procedure Builder:
– Application partitioning

– Built-in editors

– GUI execution environment

• Describe the components of Procedure Builder
– Object Navigator

– Program Unit Editor

– PL/SQL Interpreter

– Debugger

D
Copyright © Oracle Corporation, 2001. All rights reserved.

REF Cursors

Copyright © Oracle Corporation, 2001. All rights reserved.D-2

Cursor Variables

• Cursor variables are like C or Pascal pointers,
which hold the memory location (address) of an
item instead of the item itself

• In PL/SQL, a pointer is declared as REF X, where
REF is short for REFERENCE and X stands for a
class of objects

• A cursor variable has the data type REF CURSOR
• A cursor is static, but a cursor variable is dynamic

• Cursor variables give you more flexibility

Copyright © Oracle Corporation, 2001. All rights reserved.D-3

Why Use Cursor Variables?

• You can use cursor variables to pass query result
sets between PL/SQL stored subprograms and
various clients.

• PL/SQL can share a pointer to the query work area
in which the result set is stored.

• You can pass the value of a cursor variable freely
from one scope to another.

• You can reduce network traffic by having a
PL/SQL block open (or close) several host cursor
variables in a single round trip.

Copyright © Oracle Corporation, 2001. All rights reserved.D-4

Defining Defining REFREF CURSORCURSOR TypesTypes

• Define a REF CURSOR type.

Define a REF CURSOR type
TYPE ref_type_name IS REF CURSOR [RETURN return_type];

• Declare a cursor variable of that type.

ref_cv ref_type_name;

• Example:
DECLARE
TYPE DeptCurTyp IS REF CURSOR RETURN
departments%ROWTYPE;
dept_cv DeptCurTyp;

Copyright © Oracle Corporation, 2001. All rights reserved.D-6

Using the OPEN-FOR, FETCH, and CLOSE
Statements

• The OPEN-FOR statement associates a cursor
variable with a multirow query, executes the
query, identifies the result set, and positions the
cursor to point to the first row of the result set.

• The FETCH statement returns a row from the result
set of a multirow query, assigns the values of
select-list items to corresponding variables or
fields in the INTO clause, increments the count
kept by %ROWCOUNT, and advances the cursor to
the next row.

• The CLOSE statement disables a cursor variable.

Copyright © Oracle Corporation, 2001. All rights reserved.D-8

An Example of Fetching

DECLARE
TYPE EmpCurTyp IS REF CURSOR;
emp_cv EmpCurTyp;
emp_rec employees%ROWTYPE;
sql_stmt VARCHAR2(200);
my_job VARCHAR2(10) := 'ST_CLERK';

BEGIN
sql_stmt := 'SELECT * FROM employees

WHERE job_id = :j';
OPEN emp_cv FOR sql_stmt USING my_job;
LOOP

FETCH emp_cv INTO emp_rec;
EXIT WHEN emp_cv%NOTFOUND;
-- process record

END LOOP;
CLOSE emp_cv;

END;
/

	cover
	curriculum map
	introduction
	lesson 1
	lesson 2
	lesson 3
	lesson 4
	lesson 5
	lesson 6
	lesson 7
	lesson 8
	lesson 9
	lesson 10
	lesson 11
	lesson 12
	lesson 13
	lesson 14
	lesson 15
	lesson 16
	lesson 17
	lesson 18
	appendix C
	appendix D

