

Inside Microsoft
®
 SQL

Server
™
 2005: T-SQL

Querying

Itzik Ben-Gan (Solid Quality
Learning), Lubor Kollar,
Dejan Sarka

To learn more about this book, visit Microsoft Learning at
http://www.microsoft.com/mspress/books/9615.aspx

9780735623132
Publication Date: March 2006

http://www.microsoft.com/mspress/books/9615.aspx

v

What do you think of this book?
We want to hear from you!

Microsoft is interested in hearing your feedback about this publication so we can
continually improve our books and learning resources for you. To participate in a brief
online survey, please visit: www.microsoft.com/learning/booksurvey/

Table of Contents

Foreword. xiii

Preface .xv

Acknowledgments. xix

Introduction . xxiii

Organization of This Book. xxiii

System Requirements. xxiii

Installing Sample Databases . xxiv

Updates . xxiv

Code Samples . xxiv

Support for This Book . xxiv

1 Logical Query Processing .1

Logical Query Processing Phases . 3

Brief Description of Logical Query Processing Phases . 4

Sample Query Based on Customers/Orders Scenario. 4

Logical Query Processing Phase Details . 6

Step 1: Performing a Cartesian Product (Cross Join) . 6

Step 2: Applying the ON Filter (Join Condition) . 8

Step 3: Adding Outer Rows. 10

Step 4: Applying the WHERE Filter . 11

Step 5: Grouping. 12

Step 6: Applying the CUBE or ROLLUP Option . 13

Step 7: Applying the HAVING Filter. 13

Step 8: Processing the SELECT List . 14

Step 9: Applying the DISTINCT Clause . 15

Step 10: Applying the ORDER BY Clause . 15

Step 11: Applying the TOP Option . 18

New Logical Processing Phases in SQL Server 2005 . 19

Table Operators . 19

OVER Clause . 27

Set Operations . 29

Conclusion . 30

A04T623139.fm Page v Monday, March 6, 2006 1:57 PM

vi Table of Contents

2 Physical Query Processing . 31

Flow of Data During Query Processing . 32

Compilation . 35

Algebrizer . 37

Optimization. 40

Working with the Query Plan . 47

Update Plans . 59

Conclusion . 63

Acknowledgment. 63

3 Query Tuning . 65

Sample Data for This Chapter . 66

Tuning Methodology. 69

Analyze Waits at the Instance Level . 71

Correlate Waits with Queues . 80

Determine Course of Action . 81

Drill Down to the Database/File Level . 82

Drill Down to the Process Level . 84

Tune Indexes/Queries . 103

Tools for Query Tuning . 105

syscacheobjects . 105

Clearing the Cache . 105

Dynamic Management Objects. 106

STATISTICS IO . 106

Measuring the Run Time of Queries. 106

Analyzing Execution Plans . 107

Hints. 119

Traces/Profiler. 121

Database Engine Tuning Advisor. 121

Index Tuning . 122

Table and Index Structures . 122

Index Access Methods . 132

Index Optimization Scale . 155

Fragmentation . 168

Partitioning . 170

A04T623139.fm Page vi Monday, March 6, 2006 1:57 PM

Table of Contents vii

Preparing Sample Data . 170

Data Preparation . 170

TABLESAMPLE . 177

An Examination of Set-Based vs. Iterative/Procedural Approaches,
and a Tuning Exercise. 180

Additional Resources . 187

Conclusion . 189

4 Subqueries, Table Expressions, and Ranking Functions 191

Subqueries . 191

Self-Contained Subqueries . 192

Correlated Subqueries . 195

Misbehaving Subqueries . 208

Uncommon Predicates . 209

Table Expressions . 211

Derived Tables. 211

Common Table Expressions (CTE) . 214

Analytical Ranking Functions . 222

Row Number . 224

Rank and Dense Rank . 246

NTILE . 247

Auxiliary Table of Numbers. 252

Existing and Missing Ranges (Also Known as Islands and Gaps). 256

Missing Ranges (Also Known as Gaps) . 257

Existing Ranges (Also Known as Islands). 260

Conclusion . 262

5 Joins and Set Operations . 263

Joins . 263

Old Style vs. New Style . 263

Fundamental Join Types . 264

Further Examples of Joins . 276

Sliding Total of Previous Year . 287

Join Algorithms. 291

Separating Elements . 296

A04T623139.fm Page vii Monday, March 6, 2006 1:57 PM

viii Table of Contents

Set Operations . 303

UNION. 304

EXCEPT . 305

INTERSECT . 307

Precedence of Set Operations . 309

Using INTO with Set Operations . 310

Circumventing Unsupported Logical Phases. 310

Conclusion . 313

6 Aggregating and Pivoting Data. 315

OVER Clause . 315

Tiebreakers . 319

Running Aggregations . 321

Cumulative Aggregations. 323

Sliding Aggregations. 328

Year-To-Date (YTD) . 330

Pivoting . 331

Pivoting Attributes. 331

Relational Division . 335

Aggregating Data . 337

Unpivoting . 341

Custom Aggregations . 344

Custom Aggregations Using Pivoting . 345

User Defined Aggregates (UDA) . 347

Specialized Solutions. 358

Histograms . 367

Grouping Factor . 371

CUBE and ROLLUP . 374

CUBE . 374

ROLLUP . 379

Conclusion . 380

7 TOP and APPLY. 381

SELECT TOP. 381

TOP and Determinism. 383

TOP and Input Expressions. 385

TOP and Modifications . 385

A04T623139.fm Page viii Monday, March 6, 2006 1:57 PM

Table of Contents ix

APPLY . 388

Solutions to Common Problems Using TOP and APPLY. 391

TOP n for Each Group . 391

Matching Current and Previous Occurrences . 397

Paging . 402

Random Rows . 411

Median . 413

Conclusion . 415

8 Data Modification . 417

Inserting Data . 417

SELECT INTO . 417

INSERT EXEC . 419

Inserting New Rows . 423

INSERT with OUTPUT. 426

Sequence Mechanisms . 428

Deleting Data . 435

TRUNCATE vs. DELETE . 435

Removing Rows with Duplicate Data . 435

DELETE Using Joins . 438

DELETE with OUTPUT . 441

Updating Data. 443

UPDATE Using Joins . 443

UPDATE with OUTPUT . 447

SELECT and UPDATE Statement Assignments . 450

Other Performance Considerations . 454

Conclusion . 457

9 Graphs, Trees, Hierarchies, and Recursive Queries 459

Terminology. 460

Graphs . 460

Trees . 461

Hierarchies. 461

Scenarios . 462

Employee Organizational Chart . 462

Bill of Materials (BOM). 464

Road System . 468

Iteration/Recursion. 471

A04T623139.fm Page ix Monday, March 6, 2006 1:57 PM

x Table of Contents

Subordinates. 472

Ancestors. 484

Subgraph/Subtree with Path Enumeration . 487

Sorting. 491

Cycles. 502

Materialized Path . 505

Maintaining Data . 506

Querying . 512

Nested Sets . 517

Assigning Left and Right Values . 518

Querying . 527

Transitive Closure . 530

Directed Acyclic Graph . 531

Conclusion . 548

A Logic Puzzles. 551

Puzzles . 551

Puzzle 1: Medication Tablets . 551

Puzzle 2: Chocolate Bar . 552

Puzzle 3: To a T. 552

Puzzle 4: On the Dot . 553

Puzzle 5: Rectangles in a Square . 553

Puzzle 6: Measuring Time by Burning Ropes . 553

Puzzle 7: Arithmetic Maximum Calculation. 554

Puzzle 8: Covering a Chessboard with Domino Tiles . 554

Puzzle 9: The Missing Buck . 555

Puzzle 10: Flipping Lamp Switches . 555

Puzzle 11: Cutting a Stick to Make a Triangle . 555

Puzzle 12: Rectangle Within a Circle. 555

Puzzle 13: Monty Hall Problem . 556

Puzzle 14: Piece of Cake . 556

Puzzle 15: Cards Facing Up . 556

Puzzle 16: Basic Arithmetic . 557

Puzzle 17: Self-Replicating Code (Quine). 557

Puzzle 18: Hiking a Mountain . 557

Puzzle 19: Find the Pattern in the Sequence. 558

A04T623139.fm Page x Monday, March 6, 2006 1:57 PM

Table of Contents xi

Puzzle Solutions . 558

Puzzle 1: Medication Tablets . 558

Puzzle 2: Chocolate Bar . 558

Puzzle 3: To a T . 558

Puzzle 4: On the Dot . 559

Puzzle 5: Rectangles in a Square . 559

Puzzle 6: Measuring Time by Burning Ropes. 561

Puzzle 7: Arithmetic Maximum Calculation . 561

Puzzle 8: Covering a Chessboard with Domino Tiles . 561

Puzzle 9: The Missing Buck . 562

Puzzle 10: Alternating Lamp States . 562

Puzzle 11: Cutting a Stick to Make a Triangle . 562

Puzzle 12: Rectangle Within a Circle . 563

Puzzle 13: Monty Hall Problem . 563

Puzzle 14: Piece of Cake . 565

Puzzle 15: Cards Facing Up. 565

Puzzle 16: Basic Arithmetic . 565

Puzzle 17: Self-Replicating Code (Quine) . 566

Puzzle 18: Hiking a Mountain . 566

Puzzle 19: Find the Pattern in the Sequence . 567

Conclusion . 567

What do you think of this book?
We want to hear from you!

Microsoft is interested in hearing your feedback about this publication so we can
continually improve our books and learning resources for you. To participate in a brief
online survey, please visit: www.microsoft.com/learning/booksurvey/

A04T623139.fm Page xi Monday, March 6, 2006 1:57 PM

A04T623139.fm Page xii Monday, March 6, 2006 1:57 PM

1

Chapter 1

Logical Query Processing

In this chapter:

Logical Query Processing Phases . 3

Sample Query Based on Customers/Orders Scenario . 4

Logical Query Processing Phase Details . 6

New Logical Processing Phases in SQL Server 2005. .19

Conclusion .30

Observing true experts in different fields, you will find a common practice that they all share—
mastering the basics. One way or another, all professions deal with problem solving. All solu-
tions to problems, complex as they may be, involve applying a mix of key techniques. If you
want to master a profession, you need to build your knowledge upon strong foundations.
Put a lot of effort in perfecting your techniques; master the basics, and you will be able to solve
any problem.

This book is about Transact-SQL (T-SQL) querying—learning key techniques and applying
them to solve problems. I can’t think of a better way to start the book than with a chapter on
fundamentals of logical query processing. I find this chapter the most important in the book—
not just because it covers the essentials of query processing, but also because SQL program-
ming is conceptually very different than any other sort of programming.

The Microsoft SQL Server dialect of SQL—Transact-SQL—follows the ANSI standard.
Microsoft SQL Server 2000 conforms to the ANSI SQL:1992 standard at the Entry SQL level,
and Microsoft SQL Server 2005 implements some important ANSI SQL:1999 and ANSI
SQL:2003 features.

Throughout the book, I will interchangeably use the terms SQL and T-SQL. When discussing
aspects of the language that originated from ANSI SQL and are relevant to most dialects, I will
typically use the term SQL. When discussing aspects of the language with the implementation of
SQL Server in mind, I’ll typically use the term T-SQL. Note that the formal language name is
Transact-SQL, although it is commonly called T-SQL. Most programmers, including myself, feel
more comfortable calling it T-SQL, so I made a conscious choice of using the term T-SQL
throughout the book.

C01623139.fm Page 1 Monday, March 6, 2006 2:00 PM

2 Inside Microsoft SQL Server 2005: T-SQL Querying

Origin of SQL Pronunciation

Many English-speaking database professionals pronounce SQL as sequel, although the
correct pronunciation of the language is S-Q-L (“ess kyoo ell”). One can make educated
guesses about the reasoning behind the incorrect pronunciation. My guess is that there
are both historical reasons and linguistic ones.

As for historical reasons, in the 1970s IBM developed a language called SEQUEL, which
was an acronym for Structured English QUEry Language. The language was designed
to manipulate data stored in a database system called System R, which was based on
Dr. Edgar F. Codd’s model for Relational Database Management Systems (RDBMS).
Later on, the acronym SEQUEL was shortened to SQL because of a trademark dispute.
ANSI adopted SQL as a standard in 1986, and ISO did so in 1987. ANSI declared that the
official pronunciation of the language is “ess kyoo ell,” but it seems that this fact is not
common knowledge.

As for linguistic reasons, the sequel pronunciation is simply more fluent, mainly for
English speakers. I have to say that I often use it myself for this reason.

You can sometimes guess which pronunciation people use by inspecting their writings.
Someone writing “an SQL Server” probably uses the correct pronunciation, while some-
one writing “a SQL Server” probably uses the incorrect one.

More Info I urge you to read about the history of SQL and its pronunciation, which I find
fascinating, at http://www.wikimirror.com/SQL. The coverage of SQL history on the Wikimirror
site and in this chapter is based on an article from Wikipedia, the free encyclopedia.

There are many unique aspects of SQL programming, such as thinking in sets, the logical pro-
cessing order of query elements, and three-valued logic. Trying to program in SQL without
this knowledge is a straight path to lengthy, poor-performing code that is hard to maintain.
This chapter’s purpose is to help you understand SQL the way its designers envisioned it. You
need to create strong roots upon which all the rest will be built. Where relevant, I’ll explicitly
indicate elements that are T-SQL specific.

Throughout the book, I will cover complex problems and advanced techniques. But in this
chapter, as mentioned, I will deal only with the fundamentals of querying. Throughout the
book, I also will put a lot of focus on performance. But in this chapter, I will deal only with the
logical aspects of query processing. I ask you to make an effort while reading this chapter to
not think about performance at all. There will be plenty of performance coverage later in the
book. Some of the logical query processing phases that I’ll describe in this chapter might seem
very inefficient. But keep in mind that in practice, the actual physical processing of a query
might be very different than the logical one.

C01623139.fm Page 2 Monday, March 6, 2006 2:00 PM

Chapter 1 Logical Query Processing 3

The component in SQL Server in charge of generating the actual work plan (execution plan)
for a query is the query optimizer. The optimizer determines in which order to access the
tables, which access methods and indexes to use, which join algorithms to apply, and so on.
The optimizer generates multiple valid execution plans and chooses the one with the lowest
cost. The phases in the logical processing of a query have a very specific order. On the other
hand, the optimizer can often make shortcuts in the physical execution plan that it generates.
Of course, it will make shortcuts only if the result set is guaranteed to be the correct one—
in other words, the same result set you would get by following the logical processing phases.
For example, to use an index, the optimizer can decide to apply a filter much sooner than
dictated by logical processing.

For the aforementioned reasons, it’s important to make a clear distinction between logical and
physical processing of a query.

Without further ado, let’s delve into logical query processing phases.

Logical Query Processing Phases
This section introduces the phases involved in the logical processing of a query. I will first
briefly describe each step. Then, in the following sections, I’ll describe the steps in much more
detail and apply them to a sample query. You can use this section as a quick reference when-
ever you need to recall the order and general meaning of the different phases.

Listing 1-1 contains a general form of a query, along with step numbers assigned according to
the order in which the different clauses are logically processed.

Listing 1-1 Logical query processing step numbers

(8) SELECT (9) DISTINCT (11) <TOP_specification> <select_list>

(1) FROM <left_table>

(3) <join_type> JOIN <right_table>

(2) ON <join_condition>

(4) WHERE <where_condition>

(5) GROUP BY <group_by_list>

(6) WITH {CUBE | ROLLUP}

(7) HAVING <having_condition>

(10) ORDER BY <order_by_list>

The first noticeable aspect of SQL that is different than other programming languages is the
order in which the code is processed. In most programming languages, the code is processed
in the order in which it is written. In SQL, the first clause that is processed is the FROM clause,
while the SELECT clause, which appears first, is processed almost last.

Each step generates a virtual table that is used as the input to the following step. These virtual
tables are not available to the caller (client application or outer query). Only the table gener-
ated by the final step is returned to the caller. If a certain clause is not specified in a query, the

C01623139.fm Page 3 Monday, March 6, 2006 2:00 PM

4 Inside Microsoft SQL Server 2005: T-SQL Querying

corresponding step is simply skipped. Following is a brief description of the different logical
steps applied in both SQL Server 2000 and SQL Server 2005. Later in the chapter, I will
discuss separately the steps that were added in SQL Server 2005.

Brief Description of Logical Query Processing Phases

Don’t worry too much if the description of the steps doesn’t seem to make much sense for
now. These are provided as a reference. Sections that come after the scenario example
will cover the steps in much more detail.

1. FROM: A Cartesian product (cross join) is performed between the first two tables in the
FROM clause, and as a result, virtual table VT1 is generated.

2. ON: The ON filter is applied to VT1. Only rows for which the <join_condition> is TRUE
are inserted to VT2.

3. OUTER (join): If an OUTER JOIN is specified (as opposed to a CROSS JOIN or an
INNER JOIN), rows from the preserved table or tables for which a match was not found
are added to the rows from VT2 as outer rows, generating VT3. If more than two tables
appear in the FROM clause, steps 1 through 3 are applied repeatedly between the result
of the last join and the next table in the FROM clause until all tables are processed.

4. WHERE: The WHERE filter is applied to VT3. Only rows for which the <where_condition>
is TRUE are inserted to VT4.

5. GROUP BY: The rows from VT4 are arranged in groups based on the column list speci-
fied in the GROUP BY clause. VT5 is generated.

6. CUBE | ROLLUP: Supergroups (groups of groups) are added to the rows from VT5,
generating VT6.

7. HAVING: The HAVING filter is applied to VT6. Only groups for which the
<having_condition> is TRUE are inserted to VT7.

8. SELECT: The SELECT list is processed, generating VT8.

9. DISTINCT: Duplicate rows are removed from VT8. VT9 is generated.

10. ORDER BY: The rows from VT9 are sorted according to the column list specified in the
ORDER BY clause. A cursor is generated (VC10).

11. TOP: The specified number or percentage of rows is selected from the beginning of
VC10. Table VT11 is generated and returned to the caller.

Sample Query Based on Customers/Orders Scenario
To describe the logical processing phases in detail, I’ll walk you through a sample query. First
run the code in Listing 1-2 to create the Customers and Orders tables and populate them with
sample data. Tables 1-1 and 1-2 show the contents of Customers and Orders.

C01623139.fm Page 4 Monday, March 6, 2006 2:00 PM

Chapter 1 Logical Query Processing 5

Listing 1-2 Data definition language (DDL) and sample data for Customers and Orders

SET NOCOUNT ON;

USE tempdb;

GO

IF OBJECT_ID('dbo.Orders') IS NOT NULL

 DROP TABLE dbo.Orders;

GO

IF OBJECT_ID('dbo.Customers') IS NOT NULL

 DROP TABLE dbo.Customers;

GO

CREATE TABLE dbo.Customers

(

 customerid CHAR(5) NOT NULL PRIMARY KEY,

 city VARCHAR(10) NOT NULL

);

INSERT INTO dbo.Customers(customerid, city) VALUES('FISSA', 'Madrid');

INSERT INTO dbo.Customers(customerid, city) VALUES('FRNDO', 'Madrid');

INSERT INTO dbo.Customers(customerid, city) VALUES('KRLOS', 'Madrid');

INSERT INTO dbo.Customers(customerid, city) VALUES('MRPHS', 'Zion');

CREATE TABLE dbo.Orders

(

 orderid INT NOT NULL PRIMARY KEY,

 customerid CHAR(5) NULL REFERENCES Customers(customerid)

);

INSERT INTO dbo.Orders(orderid, customerid) VALUES(1, 'FRNDO');

INSERT INTO dbo.Orders(orderid, customerid) VALUES(2, 'FRNDO');

INSERT INTO dbo.Orders(orderid, customerid) VALUES(3, 'KRLOS');

INSERT INTO dbo.Orders(orderid, customerid) VALUES(4, 'KRLOS');

INSERT INTO dbo.Orders(orderid, customerid) VALUES(5, 'KRLOS');

INSERT INTO dbo.Orders(orderid, customerid) VALUES(6, 'MRPHS');

INSERT INTO dbo.Orders(orderid, customerid) VALUES(7, NULL);

Table 1-1 Contents of Customers Table

customerid city

FISSA Madrid

FRNDO Madrid

KRLOS Madrid

MRPHS Zion

Table 1-2 Contents of Orders Table

orderid customerid

1 FRNDO

2 FRNDO

3 KRLOS

C01623139.fm Page 5 Monday, March 6, 2006 2:00 PM

6 Inside Microsoft SQL Server 2005: T-SQL Querying

I will use the query shown in Listing 1-3 as my example. The query returns customers from
Madrid that made fewer than three orders (including zero orders), along with their order
counts. The result is sorted by order count, from smallest to largest. The output of this query
is shown in Table 1-3.

Listing 1-3 Query: Madrid customers with fewer than three orders

SELECT C.customerid, COUNT(O.orderid) AS numorders

FROM dbo.Customers AS C

 LEFT OUTER JOIN dbo.Orders AS O

 ON C.customerid = O.customerid

WHERE C.city = 'Madrid'

GROUP BY C.customerid

HAVING COUNT(O.orderid) < 3

ORDER BY numorders;

Both FISSA and FRNDO are customers from Madrid who made fewer than three orders.
Examine the query, and try to read it while following the steps and phases described in
Listing 1-1 and the section “Brief Description of Logical Query Processing Phases.” If this
is the first time you’re thinking of a query in such terms, it’s probably confusing for you. The
following section should help you understand the nitty-gritty details.

Logical Query Processing Phase Details
This section describes the logical query processing phases in detail by applying them to the
given sample query.

Step 1: Performing a Cartesian Product (Cross Join)

A Cartesian product (a cross join, or an unrestricted join) is performed between the first two
tables that appear in the FROM clause, and as a result, virtual table VT1 is generated. VT1 con-
tains one row for every possible combination of a row from the left table and a row from the

4 KRLOS

5 KRLOS

6 MRPHS

7 NULL

Table 1-3 Output: Madrid Customers with Fewer than Three Orders

customerid numorders

FISSA 0

FRNDO 2

Table 1-2 Contents of Orders Table

orderid customerid

C01623139.fm Page 6 Monday, March 6, 2006 2:00 PM

Chapter 1 Logical Query Processing 7

right table. If the left table contains n rows and the right table contains m rows, VT1 will con-
tain n × m rows. The columns in VT1 are qualified (prefixed) with their source table names (or
table aliases, if you specified ones in the query). In the subsequent steps (step 2 and on), a ref-
erence to a column name that is ambiguous (appears in more than one input table) must be
table-qualified (for example, C.customerid). Specifying the table qualifier for column names
that appear in only one of the inputs is optional (for example, O.orderid or just orderid).

Apply step 1 to the sample query (shown in Listing 1-3):

FROM Customers AS C ... JOIN Orders AS O

As a result, you get the virtual table VT1 shown in Table 1-4 with 28 rows (4×7).

Table 1-4 Virtual Table VT1 Returned from Step 1

C.customerid C.city O.orderid O.customerid

FISSA Madrid 1 FRNDO

FISSA Madrid 2 FRNDO

FISSA Madrid 3 KRLOS

FISSA Madrid 4 KRLOS

FISSA Madrid 5 KRLOS

FISSA Madrid 6 MRPHS

FISSA Madrid 7 NULL

FRNDO Madrid 1 FRNDO

FRNDO Madrid 2 FRNDO

FRNDO Madrid 3 KRLOS

FRNDO Madrid 4 KRLOS

FRNDO Madrid 5 KRLOS

FRNDO Madrid 6 MRPHS

FRNDO Madrid 7 NULL

KRLOS Madrid 1 FRNDO

KRLOS Madrid 2 FRNDO

KRLOS Madrid 3 KRLOS

KRLOS Madrid 4 KRLOS

KRLOS Madrid 5 KRLOS

KRLOS Madrid 6 MRPHS

KRLOS Madrid 7 NULL

MRPHS Zion 1 FRNDO

MRPHS Zion 2 FRNDO

MRPHS Zion 3 KRLOS

MRPHS Zion 4 KRLOS

MRPHS Zion 5 KRLOS

MRPHS Zion 6 MRPHS

MRPHS Zion 7 NULL

C01623139.fm Page 7 Monday, March 6, 2006 2:00 PM

8 Inside Microsoft SQL Server 2005: T-SQL Querying

Step 2: Applying the ON Filter (Join Condition)

The ON filter is the first of three possible filters (ON, WHERE, and HAVING) that can be spec-
ified in a query. The logical expression in the ON filter is applied to all rows in the virtual table
returned by the previous step (VT1). Only rows for which the <join_condition> is TRUE
become part of the virtual table returned by this step (VT2).

Three-Valued Logic

Allow me to digress a bit to cover important aspects of SQL related to this step. The pos-
sible values of a logical expression in SQL are TRUE, FALSE, and UNKNOWN. This is
referred to as three-valued logic. Three-valued logic is unique to SQL. Logical expres-
sions in most programming languages can be only TRUE or FALSE. The UNKNOWN
logical value in SQL typically occurs in a logical expression that involves a NULL (for
example, the logical value of each of these three expressions is UNKNOWN: NULL > 42;
NULL = NULL; X + NULL > Y). The special value NULL typically represents a missing or
irrelevant value. When comparing a missing value to another value (even another
NULL), the logical result is always UNKNOWN.

Dealing with UNKNOWN logical results and NULLs can be very confusing. While NOT
TRUE is FALSE, and NOT FALSE is TRUE, the opposite of UNKNOWN (NOT
UNKNOWN) is still UNKNOWN.

UNKNOWN logical results and NULLs are treated inconsistently in different elements
of the language. For example, all query filters (ON, WHERE, and HAVING) treat
UNKNOWN in the same way as FALSE. A row for which a filter is UNKNOWN is elim-
inated from the result set. On the other hand, an UNKNOWN value in a CHECK con-
straint is actually treated like TRUE. Suppose you have a CHECK constraint in a table to
require that the salary column be greater than zero. A row entered into the table with a
NULL salary is accepted, because (NULL > 0) is UNKNOWN and treated like TRUE in
the CHECK constraint.

A comparison between two NULLs in filters yields an UNKNOWN, which as I men-
tioned earlier, is treated like FALSE—as if one NULL is different than another.

On the other hand, UNIQUE and PRIMARY KEY constraints, sorting, and grouping treat
NULLs as equal:

■ You cannot insert into a table two rows with a NULL in a column that has a
UNIQUE or PRIMARY KEY constraint defined on it.

■ A GROUP BY clause groups all NULLs into one group.

■ An ORDER BY clause sorts all NULLs together.

In short, it’s a good idea to be aware of the way UNKNOWN logical results and NULLs
are treated in the different elements of the language to spare you grief.

C01623139.fm Page 8 Monday, March 6, 2006 2:00 PM

Chapter 1 Logical Query Processing 9

Apply step 2 to the sample query:

ON C.customerid = O.customerid

Table 1-5 shows the value of the logical expression in the ON filter for the rows from VT1.

Only rows for which the <join_condition> is TRUE are inserted to VT2—the input virtual table
of the next step, shown in Table 1-6.

Table 1-5 Logical Results of ON Filter Applied to Rows from VT1

Match? C.customerid C.city O.orderid O.customerid

FALSE FISSA Madrid 1 FRNDO

FALSE FISSA Madrid 2 FRNDO

FALSE FISSA Madrid 3 KRLOS

FALSE FISSA Madrid 4 KRLOS

FALSE FISSA Madrid 5 KRLOS

FALSE FISSA Madrid 6 MRPHS

UNKNOWN FISSA Madrid 7 NULL

TRUE FRNDO Madrid 1 FRNDO

TRUE FRNDO Madrid 2 FRNDO

FALSE FRNDO Madrid 3 KRLOS

FALSE FRNDO Madrid 4 KRLOS

FALSE FRNDO Madrid 5 KRLOS

FALSE FRNDO Madrid 6 MRPHS

UNKNOWN FRNDO Madrid 7 NULL

FALSE KRLOS Madrid 1 FRNDO

FALSE KRLOS Madrid 2 FRNDO

TRUE KRLOS Madrid 3 KRLOS

TRUE KRLOS Madrid 4 KRLOS

TRUE KRLOS Madrid 5 KRLOS

FALSE KRLOS Madrid 6 MRPHS

UNKNOWN KRLOS Madrid 7 NULL

FALSE MRPHS Zion 1 FRNDO

FALSE MRPHS Zion 2 FRNDO

FALSE MRPHS Zion 3 KRLOS

FALSE MRPHS Zion 4 KRLOS

FALSE MRPHS Zion 5 KRLOS

TRUE MRPHS Zion 6 MRPHS

UNKNOWN MRPHS Zion 7 NULL

C01623139.fm Page 9 Monday, March 6, 2006 2:00 PM

10 Inside Microsoft SQL Server 2005: T-SQL Querying

Step 3: Adding Outer Rows

This step is relevant only for an outer join. For an outer join, you mark one or both input
tables as preserved by specifying the type of outer join (LEFT, RIGHT, or FULL). Marking a
table as preserved means that you want all of its rows returned, even when filtered out by the
<join_condition>. A left outer join marks the left table as preserved, a right outer join marks the
right, and a full outer join marks both. Step 3 returns the rows from VT2, plus rows from the
preserved table for which a match was not found in step 2. These added rows are referred to
as outer rows. NULLs are assigned to the attributes (column values) of the nonpreserved table
in the outer rows. As a result, virtual table VT3 is generated.

In our example, the preserved table is Customers:

Customers AS C LEFT OUTER JOIN Orders AS O

Only customer FISSA did not find any matching orders (wasn’t part of VT2). Therefore, FISSA
is added to the rows from the previous step with NULLs for the Orders attributes, and as a
result, virtual table VT3 (shown in Table 1-7) is generated.

Note If more than two tables are joined, steps 1 through 3 will be applied between VT3
and the third table in the FROM clause. This process will continue repeatedly if more tables
appear in the FROM clause, and the final virtual table will be used as the input for the
next step.

Table 1-6 Virtual Table VT2 Returned from Step 2

Match? C.customerid C.city O.orderid O.customerid

TRUE FRNDO Madrid 1 FRNDO

TRUE FRNDO Madrid 2 FRNDO

TRUE KRLOS Madrid 3 KRLOS

TRUE KRLOS Madrid 4 KRLOS

TRUE KRLOS Madrid 5 KRLOS

TRUE MRPHS Zion 6 MRPHS

Table 1-7 Virtual Table VT3 Returned from Step 3

C.customerid C.city O.orderid O.customerid

FRNDO Madrid 1 FRNDO

FRNDO Madrid 2 FRNDO

KRLOS Madrid 3 KRLOS

KRLOS Madrid 4 KRLOS

KRLOS Madrid 5 KRLOS

MRPHS Zion 6 MRPHS

FISSA Madrid NULL NULL

C01623139.fm Page 10 Monday, March 6, 2006 2:00 PM

Chapter 1 Logical Query Processing 11

Step 4: Applying the WHERE Filter

The WHERE filter is applied to all rows in the virtual table returned by the previous step. Only
rows for which <where_condition> is TRUE become part of the virtual table returned by
this step (VT4).

Caution Because the data is not grouped yet, you cannot use aggregate filters here—for
example, you cannot write WHERE orderdate = MAX(orderdate). Also, you cannot refer to col-
umn aliases created by the SELECT list because the SELECT list was not processed yet—for
example, you cannot write SELECT YEAR(orderdate) AS orderyear … WHERE orderyear > 2000.

A confusing aspect of queries containing an OUTER JOIN clause is whether to specify a logi-
cal expression in the ON filter or in the WHERE filter. The main difference between the two
is that ON is applied before adding outer rows (step 3), while WHERE is applied after step 3.
An elimination of a row from the preserved table by the ON filter is not final because step 3
will add it back; while an elimination of a row by the WHERE filter is final. Bearing this in
mind should help you make the right choice.

For example, suppose you want to return certain customers and their orders from the Cus-
tomers and Orders tables. The customers you want to return are only Madrid customers, both
those that made orders and those that did not. An outer join is designed exactly for such a
request. You perform a left outer join between Customers and Orders, marking the Customers
table as the preserved table. To be able to return customers that made no orders, you must
specify the correlation between customers and orders in the ON clause (ON C.customerid =
O.customerid). Customers with no orders are eliminated in step 2 but added back in step 3 as
outer rows. However, because you want to keep only rows for Madrid customers, regardless of
whether they made orders, you must specify the city filter in the WHERE clause (WHERE
C.city = ‘Madrid’). Specifying the city filter in the ON clause would cause non-Madrid custom-
ers to be added back to the result set by step 3.

Tip There’s a logical difference between the ON and WHERE clauses only when using an
outer join. When using an inner join, it doesn’t matter where you specify your logical expres-
sions because step 3 is skipped. The filters are applied one after the other with no interme-
diate step between them.

There’s one exception that is relevant only when using the GROUP BY ALL option. I will dis-
cuss this option shortly in the next section, which covers the GROUP BY phase.

Apply the filter in the sample query:

WHERE C.city = 'Madrid'

The row for customer MRPHS from VT3 is removed because the city is not Madrid, and virtual
table VT4, which is shown in Table 1-8, is generated.

C01623139.fm Page 11 Monday, March 6, 2006 2:00 PM

12 Inside Microsoft SQL Server 2005: T-SQL Querying

Step 5: Grouping

The rows from the table returned by the previous step are arranged in groups. Each unique
combination of values in the column list that appears in the GROUP BY clause makes a group.
Each base row from the previous step is attached to one and only one group. Virtual table VT5
is generated. VT5 consists of two sections: the groups section that is made of the actual groups,
and the raw section that is made of the attached base rows from the previous step.

Apply step 5 to the sample query:

GROUP BY C.customerid

You get the virtual table VT5 shown in Table 1-9.

If a GROUP BY clause is specified in a query, all following steps (HAVING, SELECT, and so
on) can specify only expressions that result in a scalar (singular) value for a group. In other
words, the results can be either a column/expression that participates in the GROUP BY list—
for example, C.customerid—or an aggregate function, such as COUNT(O.orderid). The reason-
ing behind this limitation is that a single row in the final result set will eventually be generated
for each group (unless filtered out). Examine VT5 in Table 1-9, and think what the query
should return for customer FRNDO if the SELECT list you specified had been SELECT
C.customerid, O.orderid. There are two different orderid values in the group; therefore, the
answer is nondeterministic. SQL doesn’t allow such a request. On the other hand, if you
specify: SELECT C.customerid, COUNT(O.orderid) AS numorders, the answer for FRNDO is
deterministic: it’s 2.

Table 1-8 Virtual Table VT4 Returned from Step 4

C.customerid C.city O.orderid O.customerid

FRNDO Madrid 1 FRNDO

FRNDO Madrid 2 FRNDO

KRLOS Madrid 3 KRLOS

KRLOS Madrid 4 KRLOS

KRLOS Madrid 5 KRLOS

FISSA Madrid NULL NULL

Table 1-9 Virtual Table VT5 Returned from Step 5

Groups Raw

C.customerid C.customerid C.city O.orderid O.customerid

FRNDO FRNDO

FRNDO

Madrid

Madrid

1

2

FRNDO

FRNDO

KRLOS KRLOS

KRLOS

KRLOS

Madrid

Madrid

Madrid

3

4

5

KRLOS

KRLOS

KRLOS

FISSA FISSA Madrid NULL NULL

C01623139.fm Page 12 Monday, March 6, 2006 2:00 PM

Chapter 1 Logical Query Processing 13

Note You’re also allowed to group by the result of an expression—for instance, GROUP BY
YEAR(orderdate). If you do, when working in SQL Server 2000, all following steps cannot per-
form any further manipulation to the GROUP BY expression, unless it’s a base column. For
example, the following is not allowed in SQL Server 2000: SELECT YEAR(orderdate) + 1 AS
nextyear … GROUP BY YEAR(orderdate). In SQL Server 2005, this limitation has been removed.

This phase considers NULLs as equal. That is, all NULLs are grouped into one group just like
a known value.

As I mentioned earlier, the input to the GROUP BY phase is the virtual table returned by the pre-
vious step (VT4). If you specify GROUP BY ALL, groups that were removed by the fourth phase
(WHERE filter) are added to this step’s result virtual table (VT5) with an empty set in the raw
section. This is the only case where there is a difference between specifying a logical expression
in the ON clause and in the WHERE clause when using an inner join. If you revise our example
to use the GROUP BY ALL C.customerid instead of GROUP BY C.customerid, you’ll find that
customer MRPHS, which was removed by the WHERE filter, will be added to VT5’s groups
section, along with an empty set in the raw section. The COUNT aggregate function in one
of the following steps would be zero for such a group, while all other aggregate functions
(SUM, AVG, MIN, MAX) would be NULL.

Note The GROUP BY ALL option is a nonstandard legacy feature. It introduces many
semantic issues when Microsoft adds new T-SQL features. Even though this feature is fully
supported in SQL Server 2005, you might want to refrain from using it because it might
eventually be deprecated.

Step 6: Applying the CUBE or ROLLUP Option

If CUBE or ROLLUP is specified, supergroups are created and added to the groups in the vir-
tual table returned by the previous step. Virtual table VT6 is generated.

Step 6 is skipped in our example because CUBE and ROLLUP are not specified in the sample
query. CUBE and ROLLUP will be covered in Chapter 6.

Step 7: Applying the HAVING Filter

The HAVING filter is applied to the groups in the table returned by the previous step. Only
groups for which the <having_condition> is TRUE become part of the virtual table returned by
this step (VT7). The HAVING filter is the first and only filter that applies to the grouped data.

Apply this step to the sample query:

HAVING COUNT(O.orderid) < 3

C01623139.fm Page 13 Monday, March 6, 2006 2:00 PM

14 Inside Microsoft SQL Server 2005: T-SQL Querying

The group for KRLOS is removed because it contains three orders. Virtual table VT7, which is
shown in Table 1-10, is generated.

Note It is important to specify COUNT(O.orderid) here and not COUNT(*). Because the join
is an outer one, outer rows were added for customers with no orders. COUNT(*) would have
added outer rows to the count, undesirably producing a count of one order for FISSA.
COUNT(O.orderid) correctly counts the number of orders for each customer, producing the
desired value 0 for FISSA. Remember that COUNT(<expression>) ignores NULLs just like any
other aggregate function.

An aggregate function does not accept a subquery as an input—for example, HAVING
SUM((SELECT …)) > 10.

Step 8: Processing the SELECT List

Though specified first in the query, the SELECT list is processed only at the eighth step. The
SELECT phase constructs the table that will eventually be returned to the caller. The expres-
sions in the SELECT list can return base columns and manipulations of base columns from
the virtual table returned by the previous step. Remember that if the query is an aggregate
query, after step 5 you can refer to base columns from the previous step only if they are part
of the groups section (GROUP BY list). If you refer to columns from the raw section, these
must be aggregated. Base columns selected from the previous step maintain their column
names unless you alias them (for example, col1 AS c1). Expressions that are not base columns
should be aliased to have a column name in the result table—for example, YEAR(orderdate) AS
orderyear.

Important Aliases created by the SELECT list cannot be used by earlier steps. In fact,
expression aliases cannot even be used by other expressions within the same SELECT list. The
reasoning behind this limitation is another unique aspect of SQL, being an all-at-once oper-
ation. For example, in the following SELECT list, the logical order in which the expressions are
evaluated should not matter and is not guaranteed: SELECT c1 + 1 AS e1, c2 + 1 AS e2. There-
fore, the following SELECT list is not supported: SELECT c1 + 1 AS e1, e1 + 1 AS e2. You’re
allowed to reuse column aliases only in steps following the SELECT list, such as the ORDER BY
step—for example, SELECT YEAR(orderdate) AS orderyear … ORDER BY orderyear.

Apply this step to the sample query:

SELECT C.customerid, COUNT(O.orderid) AS numorders

Table 1-10 Virtual Table VT7 Returned from Step 7

C.customerid C.customerid C.city O.orderid O.customerid

FRNDO FRNDO

FRNDO

Madrid

Madrid

1

2

FRNDO

FRNDO

FISSA FISSA Madrid NULL NULL

C01623139.fm Page 14 Monday, March 6, 2006 2:00 PM

Chapter 1 Logical Query Processing 15

You get the virtual table VT8, which is shown in Table 1-11.

The concept of an all-at-once operation can be hard to grasp. For example, in most program-
ming environments, to swap values between variables you use a temporary variable. However,
to swap table column values in SQL, you can use:

UPDATE dbo.T1 SET c1 = c2, c2 = c1;

Logically, you should assume that the whole operation takes place at once. It is as if the table
is not modified until the whole operation finishes and then the result replaces the source.
For similar reasons, this UPDATE

UPDATE dbo.T1 SET c1 = c1 + (SELECT MAX(c1) FROM dbo.T1);

would update all of T1’s rows, adding to c1 the maximum c1 value from T1 when the update
started. You shouldn’t be concerned that the maximum c1 value would keep changing as
the operation proceeds because the operation occurs all at once.

Step 9: Applying the DISTINCT Clause

If a DISTINCT clause is specified in the query, duplicate rows are removed from the virtual
table returned by the previous step, and virtual table VT9 is generated.

Step 9 is skipped in our example because DISTINCT is not specified in the sample query. In
fact, DISTINCT is redundant when GROUP BY is used, and it would remove no rows.

Step 10: Applying the ORDER BY Clause

The rows from the previous step are sorted according to the column list specified in the
ORDER BY clause returning the cursor VC10. This step is the first and only step where col-
umn aliases created in the SELECT list can be reused.

According to both ANSI SQL:1992 and ANSI SQL:1999, if DISTINCT is specified, the expres-
sions in the ORDER BY clause have access only to the virtual table returned by the previous
step (VT9). That is, you can sort by only what you select. ANSI SQL:1992 has the same limi-
tation even when DISTINCT is not specified. However, ANSI SQL:1999 enhances the ORDER
BY support by allowing access to both the input and output virtual tables of the SELECT
phase. That is, if DISTINCT is not specified, in the ORDER BY clause you can specify any
expression that would have been allowed in the SELECT clause. Namely, you can sort by
expressions that you don’t end up returning in the final result set.

Table 1-11 Virtual Table VT8 Returned from Step 8

C.customerid numorders

FRNDO 2

FISSA 0

C01623139.fm Page 15 Monday, March 6, 2006 2:00 PM

16 Inside Microsoft SQL Server 2005: T-SQL Querying

There is a reason for not allowing access to expressions you’re not returning if DISTINCT is
specified. When adding expressions to the SELECT list, DISTINCT can potentially change the
number of rows returned. Without DISTINCT, of course, changes in the SELECT list don’t
affect the number of rows returned. T-SQL always implemented the ANSI SQL:1999
approach.

In our example, because DISTINCT is not specified, the ORDER BY clause has access to both
VT7, shown in Table 1-10, and VT8, shown in Table 1-11.

In the ORDER BY clause, you can also specify ordinal positions of result columns from the
SELECT list. For example, the following query sorts the orders first by customerid, and then
by orderid:

SELECT orderid, customerid FROM dbo.Orders ORDER BY 2, 1;

However, this practice is not recommended because you might make changes to the SELECT
list and forget to revise the ORDER BY list accordingly. Also, when the query strings are long,
it’s hard to figure out which item in the ORDER BY list corresponds to which item in the
SELECT list.

Important This step is different than all other steps in the sense that it doesn’t return a
valid table; instead, it returns a cursor. Remember that SQL is based on set theory. A set
doesn’t have a predetermined order to its rows; it’s a logical collection of members, and the
order of the members shouldn’t matter. A query that applies sorting to the rows of a table
returns an object with rows organized in a particular physical order. ANSI calls such an object
a cursor. Understanding this step is one of the most fundamental things in correctly under-
standing SQL.

Usually when describing the contents of a table, most people (including me) routinely depict
the rows in a certain order. For example, I provided Tables 1-1 and 1-2 to describe the con-
tents of the Customers and Orders tables. In depicting the rows one after the other, uninten-
tionally I help cause some confusion by implying a certain order. A more correct way to depict
the content of the Customers and Orders tables would be the one shown in Figure 1-1.

Figure 1-1 Customers and Orders sets

Customers
(customerid, city)

Orders
(orderid, customerid)

(FRNDO, Madrid)

(KRLOS, Madrid)

(FISSA, Madrid)

(MRPHS, Zion)

(5, KRLOS)

(6, MRPHS)
(3, KRLOS)

(2, FRNDO)
(7, NULL)

(4, KRLOS) (1, FRNDO)

C01623139.fm Page 16 Monday, March 6, 2006 2:00 PM

Chapter 1 Logical Query Processing 17

Note Although SQL doesn’t assume any given order to a table’s rows, it does maintain
ordinal positions for columns based on creation order. Specifying SELECT * (although a bad
practice for several reasons that I’ll describe later in the book) guarantees the columns would
be returned in creation order.

Because this step doesn’t return a table (it returns a cursor), a query with an ORDER BY
clause cannot be used as a table expression—that is, a view, inline table-valued function, sub-
query, derived table, or common table expression (CTE). Rather, the result must be returned
to the client application that expects a physical record set back. For example, the following
derived table query is invalid and produces an error:

SELECT *

FROM (SELECT orderid, customerid

FROM dbo.Orders

ORDER BY orderid) AS D;

Similarly, the following view is invalid:

CREATE VIEW dbo.VSortedOrders

AS

SELECT orderid, customerid

FROM dbo.Orders

ORDER BY orderid

GO

In SQL, no query with an ORDER BY clause is allowed in a table expression. In T-SQL, there
is an exception to this rule that is described in the following step—applying the TOP option.

So remember, don’t assume any particular order for a table’s rows. Conversely, don’t specify
an ORDER BY clause unless you really need the rows sorted. Sorting has a cost—SQL Server
needs to perform an ordered index scan or apply a sort operator.

The ORDER BY step considers NULLs as equal. That is, NULLs are sorted together. ANSI
leaves the question of whether NULLs are sorted lower or higher than known values up to
implementations, which must be consistent. T-SQL sorts NULLs as lower than known values
(first).

Apply this step to the sample query:

ORDER BY numorders

You get the cursor VC10 shown in Table 1-12.

Table 1-12 Cursor VC10 Returned from Step 10

C.customerid numorders

FISSA 0

FRNDO 2

C01623139.fm Page 17 Monday, March 6, 2006 2:00 PM

18 Inside Microsoft SQL Server 2005: T-SQL Querying

Step 11: Applying the TOP Option

The TOP option allows you to specify a number or percentage of rows (rounded up) to return.
In SQL Server 2000, the input to TOP must be a constant, while in SQL Server 2005, the input
can be any self-contained expression. The specified number of rows is selected from the begin-
ning of the cursor returned by the previous step. Table VT11 is generated and returned to
the caller.

Note The TOP option is T-SQL specific and is not relational.

This step relies on the physical order of the rows to determine which rows are considered the
“first” requested number of rows. If an ORDER BY clause with a unique ORDER BY list is spec-
ified in a query, the result is deterministic. That is, there’s only one possible correct result,
containing the first requested number of rows based on the specified sort. Similarly, when an
ORDER BY clause is specified with a non-unique ORDER BY list but the TOP option is speci-
fied WITH TIES, the result is also deterministic. SQL Server inspects the last row that was
returned physically and returns all other rows from the table that have the same sort values as
the last row.

However, when a non-unique ORDER BY list is specified without the WITH TIES option, or
ORDER BY is not specified at all, a TOP query is nondeterministic. That is, the rows returned
are the ones that SQL Server happened to physically access first, and there might be different
results that are considered correct. If you want to guarantee determinism, a TOP query
must have either a unique ORDER BY list or the WITH TIES option.

As you can surmise, TOP queries are most commonly used with an ORDER BY clause that
determines which rows to return. SQL Server allows you to specify TOP queries in table
expressions. It wouldn’t make much sense to allow TOP queries in table expressions with-
out allowing you to also specify an ORDER BY clause. (See the limitation in step 10.) Thus,
queries with an ORDER BY clause are in fact allowed in table expressions only if TOP is
also specified. In other words, a query with both a TOP clause and an ORDER BY clause
returns a relational result. The ironic thing is that by using the nonstandard, nonrelational
TOP option, a query that would otherwise return a cursor returns a relational result. Sup-
port for nonstandard, nonrelational features (as practical as they might be) allows pro-
grammers to exploit them in some absurd ways that would not have been supported
otherwise. Here’s an example:

SELECT *

FROM (SELECT TOP 100 PERCENT orderid, customerid

FROM dbo.Orders

ORDER BY orderid) AS D;

Or:

C01623139.fm Page 18 Monday, March 6, 2006 2:00 PM

Chapter 1 Logical Query Processing 19

CREATE VIEW dbo.VSortedOrders

AS

SELECT TOP 100 PERCENT orderid, customerid

FROM dbo.Orders

ORDER BY orderid

GO

Step 11 is skipped in our example because TOP is not specified.

New Logical Processing Phases in SQL Server 2005
This section covers the logical processing phases involved with the new T-SQL query
elements in SQL Server 2005. These include new table operators (APPLY, PIVOT, and
UNPIVOT), the new OVER clause, and new set operations (EXCEPT and INTERSECT).

Note APPLY, PIVOT, and UNPIVOT are not ANSI operators; rather, they are T-SQL specific
extensions.

I find it a bit problematic to cover the logical processing phases involved with the new product
version in detail in the first chapter. These elements are completely new, and there’s so much
to say about each. Instead, I will provide a brief overview of each element here and conduct
much more detailed discussions later in the book in focused chapters.

As I mentioned earlier, my goal for this chapter is to give you a reference that you can return
to later when in doubt regarding the logical aspects of query elements and the way they inter-
act with each other. Bearing this in mind, the full meaning of the logical phases of query pro-
cessing that handle the new elements might not be completely clear to you right now. Don’t
let that worry you. After reading the focused chapters discussing each element in detail, you
will probably find the reference I provide in this chapter useful. Rest assured that everything
will make more sense then.

Table Operators

SQL Server 2005 supports four types of table operators in the FROM clause of a query: JOIN,
APPLY, PIVOT, and UNPIVOT.

I covered the logical processing phases involved with joins earlier and will also discuss joins
in more details in Chapter 5. Here I will briefly describe the three new operators and how
they interact with each other.

Table operators get one or two tables as inputs. Call them left input and right input based on
their position in respect to the table operator keyword (JOIN, APPLY, PIVOT, UNPIVOT). Just
like joins, all table operators get a virtual table as their left input. The first table operator that
appears in the FROM clause gets a table expression as the left input and returns a virtual table

C01623139.fm Page 19 Monday, March 6, 2006 2:00 PM

20 Inside Microsoft SQL Server 2005: T-SQL Querying

as a result. A table expression can stand for many things: a real table, temporary table, table
variable, derived table, CTE, view, or table-valued function.

More Info For details on table expressions, please refer to Chapter 4.

The second table operator that appears in the FROM clause gets the virtual table returned
from the previous table operation as its left input.

Each table operator involves a different set of steps. For convenience and clarity, I’ll prefix the
step numbers with the initial of the table operator (J for JOIN, A for APPLY, P for PIVOT, and
U for UNPIVOT).

Following are the four table operators along with their elements:

(J) <left_table_expression>

<join_type> JOIN <right_table_expression>

ON <join_condition>

(A) <left_table_expression>

{CROSS | OUTER} APPLY <table_expression>

(P) <left_table_expression>

PIVOT (<aggregate_func(<expression>)> FOR

<source_col> IN(<target_col_list>))

AS <result_table_alias>

(U) <left_table_expression>

UNPIVOT (<target_values_col> FOR

<target_names_col> IN(<source_col_list>))

AS <result_table_alias>

As a reminder, a join involves a subset (depending on the join type) of the following steps:

1. J1: Cross Left and Right Inputs

2. J2: Apply ON Clause

3. J3: Add Outer Rows

APPLY

The APPLY operator involves a subset (depending on the apply type) of the following two
steps:

1. A1: Apply Right Table Expression to Left Table Input’s Rows

2. A2: Add Outer Rows

The APPLY operator basically applies the right table expression to every row from the left
input. You can think of it as being similar to a join, with one important difference—the right
table expression can refer to the left input’s columns as correlations. It’s as though in a join
there’s no precedence between the two inputs when evaluating them. With APPLY, it’s as

C01623139.fm Page 20 Monday, March 6, 2006 2:00 PM

Chapter 1 Logical Query Processing 21

though the left input is evaluated first, and then the right input is evaluated once for each row
from the left.

Step A1 is always applied in both CROSS APPLY and OUTER APPLY. Step A2 is applied only
for OUTER APPLY. CROSS APPLY doesn’t return an outer (left) row if the inner (right) table
expression returns an empty set for it. OUTER APPLY will return such a row, with NULLs
in the inner table expression’s attributes.

For example, the following query returns the two most recent orders (assuming for the sake of
this example that orderid represents chronological order) for each customer, generating the
output shown in Table 1-13:

SELECT C.customerid, city, orderid

FROM dbo.Customers AS C

CROSS APPLY

(SELECT TOP(2) orderid, customerid

FROM dbo.Orders AS O

WHERE O.customerid = C.customerid

ORDER BY orderid DESC) AS CA;

Notice that FISSA is missing from the output because the table expression CA returned an
empty set for it. If you also want to return customers that made no orders, use OUTER APPLY
as follows, generating the output shown in Table 1-14:

SELECT C.customerid, city, orderid

FROM dbo.Customers AS C

OUTER APPLY

(SELECT TOP(2) orderid, customerid

FROM dbo.Orders AS O

WHERE O.customerid = C.customerid

ORDER BY orderid DESC) AS OA;

Table 1-13 Two Most Recent Orders for Each Customer

customerid city orderid

FRNDO Madrid 2

FRNDO Madrid 1

KRLOS Madrid 5

KRLOS Madrid 4

MRPHS Zion 6

Table 1-14 Two Most Recent Orders for Each Customer, Including Customers that
Made No Orders

customerid city orderid

FISSA Madrid NULL

FRNDO Madrid 2

FRNDO Madrid 1

C01623139.fm Page 21 Monday, March 6, 2006 2:00 PM

22 Inside Microsoft SQL Server 2005: T-SQL Querying

More Info For more details on the APPLY operator, please refer to Chapter 7.

PIVOT

The PIVOT operator essentially allows you to rotate, or pivot, data from a state of groups of
multiple rows to a state of multiple columns in a single row per group, performing aggrega-
tions along the way.

Before I explain and demonstrate the logical steps involved with using the PIVOT operator,
examine the following query, which I will later use as the left input to the PIVOT operator:

SELECT C.customerid, city,

CASE

WHEN COUNT(orderid) = 0 THEN 'no_orders'

WHEN COUNT(orderid) <= 2 THEN 'upto_two_orders'

WHEN COUNT(orderid) > 2 THEN 'more_than_two_orders'

END AS category

FROM dbo.Customers AS C

LEFT OUTER JOIN dbo.Orders AS O

ON C.customerid = O.customerid

GROUP BY C.customerid, city;

This query returns customer categories based on count of orders (no orders, up to two orders,
more than two orders), yielding the result set shown in Table 1-15.

Suppose you wanted to know the number of customers that fall into each category per city.
The following PIVOT query allows you to achieve this, generating the output shown in
Table 1-16:

SELECT city, no_orders, upto_two_orders, more_than_two_orders

FROM (SELECT C.customerid, city,

CASE

WHEN COUNT(orderid) = 0 THEN 'no_orders'

KRLOS Madrid 5

KRLOS Madrid 4

MRPHS Zion 6

Table 1-15 Customer Categories Based on Count of Orders

customerid city category

FISSA Madrid no_orders

FRNDO Madrid upto_two_orders

KRLOS Madrid more_than_two_orders

MRPHS Zion upto_two_orders

Table 1-14 Two Most Recent Orders for Each Customer, Including Customers that
Made No Orders

customerid city orderid

C01623139.fm Page 22 Monday, March 6, 2006 2:00 PM

Chapter 1 Logical Query Processing 23

WHEN COUNT(orderid) <= 2 THEN 'upto_two_orders'

WHEN COUNT(orderid) > 2 THEN 'more_than_two_orders'

END AS category

FROM dbo.Customers AS C

LEFT OUTER JOIN dbo.Orders AS O

ON C.customerid = O.customerid

GROUP BY C.customerid, city) AS D

PIVOT(COUNT(customerid) FOR

category IN([no_orders],

[upto_two_orders],

[more_than_two_orders])) AS P;

Don’t get distracted by the query that generates the derived table D. As far as you’re con-
cerned, the PIVOT operator gets a table expression called D, containing the customer catego-
ries as its left input.

The PIVOT operator involves the following three logical phases:

1. P1: Implicit Grouping

2. P2: Isolating Values

3. P3: Applying the Aggregate Function

The first phase (P1) is very tricky to grasp. You can see in the query that the PIVOT operator
refers to two of the columns from D as input arguments (customerid and category). The first
phase implicitly groups the rows from D based on all columns that weren’t mentioned in
PIVOT’s inputs, as though there were a hidden GROUP BY there. In our case, only the city col-
umn wasn’t mentioned anywhere in PIVOT’s input arguments. So you get a group for each city
(Madrid and Zion, in our case).

Note PIVOT’s implicit grouping phase doesn’t substitute an explicit GROUP BY clause,
should one appear in a query. PIVOT will eventually yield a result virtual table, which in turn
will be input to the next logical phase, be it another table operation or the WHERE phase.
And as I described earlier in the chapter, following the WHERE phase, there might be a
GROUP BY phase. So when both PIVOT and GROUP BY appear in a query, you get two sep-
arate grouping phases—one as the first phase of PIVOT (P1), and a later one as the query’s
GROUP BY phase.

PIVOT’s second phase (P2) isolates values corresponding to target columns. Logically, it uses
the following CASE expression for each target column specified in the IN clause:

CASE WHEN <source_col> = <target_col_element> THEN <expression> END

Table 1-16 Number of Customers that Fall into Each Category per City

city no_orders upto_two_orders more_than_two_orders

Madrid 1 1 1

Zion 0 1 0

C01623139.fm Page 23 Monday, March 6, 2006 2:00 PM

24 Inside Microsoft SQL Server 2005: T-SQL Querying

In this situation, the following three expressions are logically applied:

CASE WHEN category = 'no_orders' THEN customerid END,

CASE WHEN category = 'upto_two_orders' THEN customerid END,

CASE WHEN category = 'more_than_two_orders' THEN customerid END

Note A CASE expression with no ELSE clause has an implicit ELSE NULL.

For each target column, the CASE expression will return the customer ID only if the source
row had the corresponding category; otherwise, CASE will return a NULL.

PIVOT’s third phase (P3) applies the specified aggregate function on top of each CASE expres-
sion, generating the result columns. In our case, the expressions logically become the following:

COUNT(CASE WHEN category = 'no_orders'

THEN customerid END) AS [no_orders],

COUNT(CASE WHEN category = 'upto_two_orders'

THEN customerid END) AS [upto_two_orders],

COUNT(CASE WHEN category = 'more_than_two_orders'

THEN customerid END) AS [more_than_two_orders]

In summary, the previous PIVOT query is logically equivalent to the following query:

SELECT city,

COUNT(CASE WHEN category = 'no_orders'

THEN customerid END) AS [no_orders],

COUNT(CASE WHEN category = 'upto_two_orders'

THEN customerid END) AS [upto_two_orders],

COUNT(CASE WHEN category = 'more_than_two_orders'

THEN customerid END) AS [more_than_two_orders]

FROM (SELECT C.customerid, city,

CASE

WHEN COUNT(orderid) = 0 THEN 'no_orders'

WHEN COUNT(orderid) <= 2 THEN 'upto_two_orders'

WHEN COUNT(orderid) > 2 THEN 'more_than_two_orders'

END AS category

FROM dbo.Customers AS C

LEFT OUTER JOIN dbo.Orders AS O

ON C.customerid = O.customerid

GROUP BY C.customerid, city) AS D

GROUP BY city;

More Info For more details on the PIVOT operator, please refer to Chapter 6.

UNPIVOT

UNPIVOT is the inverse of PIVOT, rotating data from a state of multiple column values from
the same row to multiple rows, each with a different source column value.

Before I demonstrate UNPIVOT’s logical phases, first run the code in Listing 1-4, which cre-
ates and populates the PivotedCategories table.

C01623139.fm Page 24 Monday, March 6, 2006 2:00 PM

Chapter 1 Logical Query Processing 25

Listing 1-4 Creating and populating the PivotedCategories table

SELECT city, no_orders, upto_two_orders, more_than_two_orders

INTO dbo.PivotedCategories

FROM (SELECT C.customerid, city,

CASE

WHEN COUNT(orderid) = 0 THEN 'no_orders'

WHEN COUNT(orderid) <= 2 THEN 'upto_two_orders'

WHEN COUNT(orderid) > 2 THEN 'more_than_two_orders'

END AS category

FROM dbo.Customers AS C

LEFT OUTER JOIN dbo.Orders AS O

ON C.customerid = O.customerid

GROUP BY C.customerid, city) AS D

PIVOT(COUNT(customerid) FOR

category IN([no_orders],

[upto_two_orders],

[more_than_two_orders])) AS P;

UPDATE dbo.PivotedCategories

SET no_orders = NULL, upto_two_orders = 3

WHERE city = 'Madrid';

After you run the code in Listing 1-4, the PivotedCategories table will contain the data shown
in Table 1-17.

I will use the following query as an example to describe the logical processing phases involved
with the UNPIVOT operator:

SELECT city, category, num_custs

FROM dbo.PivotedCategories

UNPIVOT(num_custs FOR

category IN([no_orders],

[upto_two_orders],

[more_than_two_orders])) AS U

This query unpivots (or splits) the customer categories from each source row to a separate
row per category, generating the output shown in Table 1-18.

Table 1-17 Contents of PivotedCategories Table

city no_orders upto_two_orders more_than_two_orders

Madrid NULL 3 1

Zion 0 1 0

Table 1-18 Unpivoted Customer Categories

city category num_custs

Madrid upto_two_orders 3

Madrid more_than_two_orders 1

Zion no_orders 0

C01623139.fm Page 25 Monday, March 6, 2006 2:00 PM

26 Inside Microsoft SQL Server 2005: T-SQL Querying

The following three logical processing phases are involved in an UNPIVOT operation:

1. U1: Generating Duplicates

2. U2: Isolating Target Column Values

3. U3: Filtering Out Rows with NULLs

The first step (U1) duplicates rows from the left table expression provided to UNPIVOT as an
input (PivotedCategories, in our case). Each row is duplicated once for each source column
that appears in the IN clause. Because there are three column names in the IN clause, each
source row will be duplicated three times. The result virtual table will contain a new column
holding the source column names as character strings. The name of this column will be the
one specified right before the IN clause (category, in our case). The virtual table returned from
the first step in our example is shown in Table 1-19.

The second step (U2) isolates the target column values. The name of the target column that
will hold the values is specified right before the FOR clause (num_custs, in our case). The tar-
get column name will contain the value from the column corresponding to the current row’s
category from the virtual table. The virtual table returned from this step in our example is
shown in Table 1-20.

Zion upto_two_orders 1

Zion more_than_two_orders 0

Table 1-19 Virtual Table Returned from UNPIVOT’s First Step

city no_orders upto_two_orders more_than_two_orders category

Madrid NULL 3 1 no_orders

Madrid NULL 3 1 upto_two_orders

Madrid NULL 3 1 more_than_two_orders

Zion 0 1 0 no_orders

Zion 0 1 0 upto_two_orders

Zion 0 1 0 more_than_two_orders

Table 1-20 Virtual Table Returned from UNPIVOT’s Second Step

city category num_custs

Madrid no_orders NULL

Madrid upto_two_orders 3

Madrid more_than_two_orders 1

Zion no_orders 0

Zion upto_two_orders 1

Zion more_than_two_orders 0

Table 1-18 Unpivoted Customer Categories

city category num_custs

C01623139.fm Page 26 Monday, March 6, 2006 2:00 PM

Chapter 1 Logical Query Processing 27

UNPIVOT’s third and final step (U3) is to filter out rows with NULLs in the result value col-
umn (num_custs, in our case). The virtual table returned from this step in our example is
shown in Table 1-21.

When you’re done experimenting with the UNPIVOT operator, drop the PivotedCategories
table:

DROP TABLE dbo.PivotedCategories;

More Info For more details on the UNPIVOT operator, please refer to Chapter 6.

OVER Clause

The OVER clause allows you to request window-based calculations. In SQL Server 2005, this
clause is a new option for aggregate functions (both built-in and custom Common Language
Runtime [CLR]-based aggregates) and it is a required element for the four new analytical
ranking functions (ROW_NUMBER, RANK, DENSE_RANK, and NTILE). When an OVER
clause is specified, its input, instead of the query’s GROUP BY list, specifies the window of
rows over which the aggregate or ranking function is calculated.

I won’t discuss applications of windows-based calculations here, nor will I go into detail about
exactly how these functions work; I’ll only explain the phases in which the OVER clause is
applicable. I’ll cover the OVER clause in more detail in Chapters 4 and 6.

The OVER clause is applicable only in one of two phases: the SELECT phase (8) and the
ORDER BY phase (10). This clause has access to whichever virtual table is provided to that
phase as input. Listing 1-5 highlights the logical processing phases in which the OVER clause
is applicable.

Listing 1-5 OVER clause in logical query processing

(8) SELECT (9) DISTINCT (11) TOP <select_list>

(1) FROM <left_table>

(3) <join_type> JOIN <right_table>

(2) ON <join_condition>

(4) WHERE <where_condition>

Table 1-21 Virtual Table Returned from UNPIVOT’s Third Step

city category num_custs

Madrid upto_two_orders 3

Madrid more_than_two_orders 1

Zion no_orders 0

Zion upto_two_orders 1

Zion more_than_two_orders 0

C01623139.fm Page 27 Monday, March 6, 2006 2:00 PM

28 Inside Microsoft SQL Server 2005: T-SQL Querying

(5) GROUP BY <group_by_list>

(6) WITH {CUBE | ROLLUP}

(7) HAVING <having_condition>

(10) ORDER BY <order_by_list>

You specify the OVER clause following the function to which it applies in either the select_list
or the order_by_list.

Even though I didn’t really explain in detail how the OVER clause works, I’d like to demon-
strate its use in both phases where it’s applicable. In the following example, an OVER clause
is used with the COUNT aggregate function in the SELECT list; the output of this query is
shown in Table 1-22:

SELECT orderid, customerid,

COUNT(*) OVER(PARTITION BY customerid) AS num_orders

FROM dbo.Orders

WHERE customerid IS NOT NULL

AND orderid % 2 = 1;

The PARTITION BY clause defines the window for the calculation. The COUNT(*) function
counts the number of rows in the virtual table provided to the SELECT phase as input, where
the customerid is equal to the one in the current row. Remember that the virtual table provided
to the SELECT phase as input has already undergone WHERE filtering—that is, NULL cus-
tomer IDs and even order IDs have been eliminated.

You can also use the OVER clause in the ORDER BY list. For example, the following query
sorts the rows according to the total number of output rows for the customer (in descending
order), and generates the output shown in Table 1-23:

SELECT orderid, customerid

FROM dbo.Orders

WHERE customerid IS NOT NULL

AND orderid % 2 = 1

ORDER BY COUNT(*) OVER(PARTITION BY customerid) DESC;

Table 1-22 OVER Clause Applied in SELECT Phase

orderid customerid num_orders

1 FRNDO 1

3 KRLOS 2

5 KRLOS 2

Table 1-23 OVER Clause Applied in ORDER BY Phase

orderid customerid

3 KRLOS

5 KRLOS

1 FRNDO

C01623139.fm Page 28 Monday, March 6, 2006 2:00 PM

Chapter 1 Logical Query Processing 29

More Info For details on using the OVER clause with aggregate functions, please refer to
Chapter 6. For details on using the OVER clause with analytical ranking functions, please refer
to Chapter 4.

Set Operations

SQL Server 2005 supports three set operations: UNION, EXCEPT, and INTERSECT. Only
UNION is available in SQL Server 2000. These SQL operators correspond to operators
defined in mathematical set theory. This is the syntax for a query applying a set operation:

[(]left_query[)] {UNION [ALL] | EXCEPT | INTERSECT} [(]right_query[)]

[ORDER BY <order_by_list>]

Set operations compare complete rows between the two inputs. UNION returns one result set
with the rows from both inputs. If the ALL option is not specified, UNION removes duplicate
rows from the result set. EXCEPT returns distinct rows that appear in the left input but not in
the right. INTERSECT returns the distinct rows that appear in both inputs. There’s much
more to say about these set operations, but here I’d just like to focus on the logical processing
steps involved in a set operation.

An ORDER BY clause is not allowed in the individual queries. You are allowed to specify an
ORDER BY clause at the end of the query, but it will apply to the result of the set operation.

In terms of logical processing, each input query is first processed separately with all its rele-
vant phases. The set operation is then applied, and if an ORDER BY clause is specified, it
is applied to the result set.

Take the following query, which generates the output shown in Table 1-24, as an example:

SELECT 'O' AS letter, customerid, orderid FROM dbo.Orders

WHERE customerid LIKE '%O%'

UNION ALL

SELECT 'S' AS letter, customerid, orderid FROM dbo.Orders

WHERE customerid LIKE '%S%'

ORDER BY letter, customerid, orderid;

Table 1-24 Result of a UNION ALL Set Operation

letter customerid orderid

O FRNDO 1

O FRNDO 2

O KRLOS 3

O KRLOS 4

C01623139.fm Page 29 Monday, March 6, 2006 2:00 PM

30 Inside Microsoft SQL Server 2005: T-SQL Querying

First, each input query is processed separately following all the relevant logical processing
phases. The first query returns a table with orders placed by customers containing the letter
O. The second query returns a table with orders placed by customers containing the letter S.
The set operation UNION ALL combines the two sets into one. Finally, the ORDER BY clause
sorts the rows by letter, customerid, and orderid.

As another example for logical processing phases of a set operation, the following query
returns customers that have made no orders:

SELECT customerid FROM dbo.Customers

EXCEPT

SELECT customerid FROM dbo.Orders;

The first query returns the set of customer IDs from Customers ({FISSA, FRNDO, KRLOS,
MRPHS}), and the second query returns the set of customer IDs from Orders ({FRNDO,
FRNDO, KRLOS, KRLOS, KRLOS, MRPHS, NULL}). The set operation returns ({FISSA}), the
set of rows from the first set that do not appear in the second set. Finally, the set operation
removes duplicates from the result set. In this case, there are no duplicates to remove.

The result set’s column names are determined by the set operation’s left input. Columns in
corresponding positions must match in their datatypes or be implicitly convertible. Finally, an
interesting aspect of set operations is that they treat NULLs as equal.

More Info You can find a more detailed discussion about set operations in Chapter 5.

Conclusion
Understanding logical query processing phases and the unique aspects of SQL is important
to get into the special mindset required to program in SQL. By being familiar with those
aspects of the language, you will be able to produce efficient solutions and explain your
choices. Remember, the idea is to master the basics.

O KRLOS 5

S KRLOS 3

S KRLOS 4

S KRLOS 5

S MRPHS 6

Table 1-24 Result of a UNION ALL Set Operation

letter customerid orderid

C01623139.fm Page 30 Monday, March 6, 2006 2:00 PM

315

Chapter 6

Aggregating and Pivoting Data

In this chapter:

OVER Clause .315

Tiebreakers .319

Running Aggregations .321

Pivoting .331

Unpivoting .341

Custom Aggregations .344

Histograms .367

Grouping Factor .371

CUBE and ROLLUP .374

Conclusion .380

This chapter covers various data-aggregation techniques, including the new OVER clause,
tiebreakers, running aggregates, pivoting, unpivoting, custom aggregations, histograms,
grouping factors, and the CUBE and ROLLUP options.

Throughout this chapter, in my solutions I’ll reuse techniques that I introduced earlier. I’ll also
introduce new techniques for you to familiarize yourself with.

Logic will naturally be an integral element in the solutions. Remember that at the heart of
every querying problem lies a logical puzzle.

OVER Clause
The OVER clause allows you to request window-based calculations—that is, the calculation is
performed on a whole window of values. In Chapter 4, I described in detail how you use the
OVER clause with the new analytical ranking functions. Microsoft SQL Server 2005 also intro-
duces support for the OVER clause with scalar aggregate functions; however, currently it can
be used only with the PARTITION BY clause. Hopefully, future versions of SQL Server will
also support the other ANSI elements of aggregate window functions, including the ORDER
BY and ROWS clauses.

The purpose of using the OVER clause with scalar aggregates is to calculate, for each row, an
aggregate based on a window of values that extends beyond the scope of the row—and to
do all this without using a GROUP BY clause in the query. In other words, the OVER clause
allows you to add aggregate calculations to the results of an ungrouped query. This capability

C06623139.fm Page 315 Monday, March 6, 2006 2:07 PM

316 Inside Microsoft SQL Server 2005: T-SQL Querying

provides an alternative to requesting aggregates with subqueries, in case you need to include
both base row attributes and aggregates in your results.

As a reminder, in Chapter 5 I presented a problem in which you were required to calculate two
aggregates for each sales row: the percentage the row contributed to the total sales quantity
and the difference between the row’s sales quantity and the average quantity over all sales.
I showed the following optimized query in which I used a cross join between the base table
and a derived table of aggregates, instead of using multiple subqueries:

SET NOCOUNT ON;

USE pubs;

SELECT stor_id, ord_num, title_id,

CONVERT(VARCHAR(10), ord_date, 120) AS ord_date, qty,

CAST(1.*qty / sumqty * 100 AS DECIMAL(5, 2)) AS per,

CAST(qty - avgqty AS DECIMAL(9, 2)) as diff

FROM dbo.sales,

(SELECT SUM(qty) AS sumqty, AVG(1.*qty) AS avgqty

FROM dbo.sales) AS AGG;

This query produces the output shown in Table 6-1.

Table 6-1 Sales Percentage of Total and Diff from Average

stor_id ord_num title_id ord_date qty per diff

6380 6871 BU1032 1994-09-14 5 1.01 -18.48

6380 722a PS2091 1994-09-13 3 0.61 -20.48

7066 A2976 PC8888 1993-05-24 50 10.14 26.52

7066 QA7442.3 PS2091 1994-09-13 75 15.21 51.52

7067 D4482 PS2091 1994-09-14 10 2.03 -13.48

7067 P2121 TC3218 1992-06-15 40 8.11 16.52

7067 P2121 TC4203 1992-06-15 20 4.06 -3.48

7067 P2121 TC7777 1992-06-15 20 4.06 -3.48

7131 N914008 PS2091 1994-09-14 20 4.06 -3.48

7131 N914014 MC3021 1994-09-14 25 5.07 1.52

7131 P3087a PS1372 1993-05-29 20 4.06 -3.48

7131 P3087a PS2106 1993-05-29 25 5.07 1.52

7131 P3087a PS3333 1993-05-29 15 3.04 -8.48

7131 P3087a PS7777 1993-05-29 25 5.07 1.52

7896 QQ2299 BU7832 1993-10-28 15 3.04 -8.48

7896 TQ456 MC2222 1993-12-12 10 2.03 -13.48

7896 X999 BU2075 1993-02-21 35 7.10 11.52

8042 423LL922 MC3021 1994-09-14 15 3.04 -8.48

8042 423LL930 BU1032 1994-09-14 10 2.03 -13.48

8042 P723 BU1111 1993-03-11 25 5.07 1.52

8042 QA879.1 PC1035 1993-05-22 30 6.09 6.52

C06623139.fm Page 316 Monday, March 6, 2006 2:07 PM

Chapter 6 Aggregating and Pivoting Data 317

The motivation for calculating the two aggregates in a single derived table instead of as two
separate subqueries stemmed from the fact that each subquery accessed the table/index,
while the derived table calculated the aggregates using a single scan of the data.

Similarly, you can calculate multiple aggregates using the same OVER clause, and SQL Server
will scan the required source data only once for all. Here’s how you use the OVER clause
to answer the same request:

SELECT stor_id, ord_num, title_id,

CONVERT(VARCHAR(10), ord_date, 120) AS ord_date, qty,

CAST(1.*qty / SUM(qty) OVER() * 100 AS DECIMAL(5, 2)) AS per,

CAST(qty - AVG(1.*qty) OVER() AS DECIMAL(9, 2)) AS diff

FROM dbo.sales;

Note In Chapter 4, I described the PARTITION BY clause, which is used with window func-
tions, including aggregate window functions. This clause is optional. When not specified, the
aggregate is based on the whole input rather than being calculated per partition.

Here, because I didn’t specify a PARTITION BY clause, the aggregates were calculated based
on the whole input. Logically, SUM(qty) OVER() is equivalent here to the subquery (SELECT
SUM(qty) FROM dbo.sales). Physically, it’s a different story. As an exercise, you can compare
the execution plans of the following two queries, each requesting a different number of
aggregates using the same OVER clause:

SELECT stor_id, ord_num, title_id,

SUM(qty) OVER() AS sumqty

FROM dbo.sales;

SELECT stor_id, ord_num, title_id,

SUM(qty) OVER() AS sumqty,

COUNT(qty) OVER() AS cntqty,

AVG(qty) OVER() AS avgqty,

MIN(qty) OVER() AS minqty,

MAX(qty) OVER() AS maxqty

FROM dbo.sales;

You’ll find the two plans nearly identical, with the only difference being that the single Stream
Aggregate operator calculates a different number of aggregates for each. The query costs are
identical. On the other hand, compare the execution plans of the following two queries, each
requesting a different number of aggregates using subqueries:

SELECT stor_id, ord_num, title_id,

(SELECT SUM(qty) FROM dbo.sales) AS sumqty

FROM dbo.sales;

SELECT stor_id, ord_num, title_id,

(SELECT SUM(qty) FROM dbo.sales) AS sumqty,

(SELECT COUNT(qty) FROM dbo.sales) AS cntqty,

(SELECT AVG(qty) FROM dbo.sales) AS avgqty,

C06623139.fm Page 317 Monday, March 6, 2006 2:07 PM

318 Inside Microsoft SQL Server 2005: T-SQL Querying

(SELECT MIN(qty) FROM dbo.sales) AS minqty,

(SELECT MAX(qty) FROM dbo.sales) AS maxqty

FROM dbo.sales;

You’ll find that they have different plans, with the latter being more expensive, as it rescans
the source data for each aggregate.

Another benefit of the OVER clause is that it allows for shorter and simpler code. This is espe-
cially apparent when you need to calculate partitioned aggregates. Using OVER, you simply
specify a PARTITION BY clause. Using subqueries, you have to correlate the inner query to
the outer, making the query longer and more complex.

As an example for using the PARTITION BY clause, the following query calculates the percent-
age of the quantity out of the store total and the difference from the store average, yielding
the output shown in Table 6-2:

SELECT stor_id, ord_num, title_id,

CONVERT(VARCHAR(10), ord_date, 120) AS ord_date, qty,

CAST(1.*qty / SUM(qty) OVER(PARTITION BY stor_id) * 100

AS DECIMAL(5, 2)) AS per,

CAST(qty - AVG(1.*qty) OVER(PARTITION BY stor_id)

AS DECIMAL(9, 2)) AS diff

FROM dbo.sales

ORDER BY stor_id;

Table 6-2 Sales Percentage of Store Total and Diff from Store Average

stor_id ord_num title_id ord_date qty per diff

6380 6871 BU1032 1994-09-14 5 62.50 1.00

6380 722a PS2091 1994-09-13 3 37.50 -1.00

7066 A2976 PC8888 1993-05-24 50 40.00 -12.50

7066 QA7442.3 PS2091 1994-09-13 75 60.00 12.50

7067 D4482 PS2091 1994-09-14 10 11.11 -12.50

7067 P2121 TC3218 1992-06-15 40 44.44 17.50

7067 P2121 TC4203 1992-06-15 20 22.22 -2.50

7067 P2121 TC7777 1992-06-15 20 22.22 -2.50

7131 N914008 PS2091 1994-09-14 20 15.38 -1.67

7131 N914014 MC3021 1994-09-14 25 19.23 3.33

7131 P3087a PS1372 1993-05-29 20 15.38 -1.67

7131 P3087a PS2106 1993-05-29 25 19.23 3.33

7131 P3087a PS3333 1993-05-29 15 11.54 -6.67

7131 P3087a PS7777 1993-05-29 25 19.23 3.33

7896 QQ2299 BU7832 1993-10-28 15 25.00 -5.00

7896 TQ456 MC2222 1993-12-12 10 16.67 -10.00

7896 X999 BU2075 1993-02-21 35 58.33 15.00

C06623139.fm Page 318 Monday, March 6, 2006 2:07 PM

Chapter 6 Aggregating and Pivoting Data 319

In short, the OVER clause allows for shorter and faster queries.

Tiebreakers
In this section, I want to introduce a new technique based on aggregates to solve tiebreaker
problems, which I started discussing in Chapter 4. I’ll use the same example as I used there—
returning the most recent order for each employee—using different combinations of tiebreaker
attributes that uniquely identify an order for each employee. Keep in mind that the perfor-
mance of the solutions that use subqueries very strongly depends on indexing. That is, you
need an index on the partitioning column, sort column, and tiebreaker attributes. But in prac-
tice, you don’t always have the option to add as many indexes as you like. The subquery-based
solutions will greatly suffer in performance from a lack of appropriate indexes. Using aggrega-
tion techniques, you’ll see that the solution will yield good performance even when an optimal
index is not in place—in fact, even when no good index is in place.

Let’s start with using the MAX(OrderID) as the tiebreaker. To recap, you’re after the most
recent order for each employee, using the MAX(OrderID) as the tiebreaker. For each order,
you’re supposed to return the EmployeeID, OrderDate, OrderID, CustomerID, and RequiredDate.

The aggregate technique to solve the problem applies the following logical idea in
pseudocode:

SELECT EmployeeID, MAX(OrderDate, OrderID, CustomerID, RequiredDate)

FROM dbo.Orders

GROUP BY EmployeeID;

There’s no such ability in T-SQL, so don’t try to run this query. The idea here is to generate a
row for each employee, with the MAX(OrderDate) (most recent) and the MAX(OrderID)—the
tiebreaker—among orders on the most recent OrderDate. Because the combination Employ-
eeID, OrderDate, OrderID is already unique, all other attributes (CustomerID, RequiredDate) are
simply returned from the selected row. Because a MAX of more than one attribute does not
exist in T-SQL, you must mimic it somehow, and you can do so by concatenating all attributes
to provide a scalar input value to the MAX function, and then in an outer query, extract
back the individual elements.

The question is this: what technique should you use to concatenate the attributes? The trick is
to use a fixed-width string for each attribute and to convert the attributes in a way that will not

8042 423LL922 MC3021 1994-09-14 15 18.75 -5.00

8042 423LL930 BU1032 1994-09-14 10 12.50 -10.00

8042 P723 BU1111 1993-03-11 25 31.25 5.00

8042 QA879.1 PC1035 1993-05-22 30 37.50 10.00

Table 6-2 Sales Percentage of Store Total and Diff from Store Average

stor_id ord_num title_id ord_date qty per diff

C06623139.fm Page 319 Monday, March 6, 2006 2:07 PM

320 Inside Microsoft SQL Server 2005: T-SQL Querying

change the sorting behavior. When dealing exclusively with positive numbers, you can use an
arithmetic calculation to merge values. For example, say you have the numbers m and n, each
with a valid range of 1 through 999. To merge m and n, use the following formula: m*1000 + n
AS r. To later extract the individual pieces, use r divided by 1000 to get m, and use r modulo
1000 to get n. However, in many cases you’ll probably have non-numeric data to concatenate,
so arithmetic concatenation would be out of the question. You might want to consider con-
verting all values to fixed-width character strings (CHAR(n)/NCHAR(n)) or to fixed-width
binary strings (BINARY(n)).

Here’s an example for returning the order with the MAX(OrderDate) for each employee, using
MAX(OrderID) as the tiebreaker, using binary concatenation:

USE Northwind;

SELECT EmployeeID,

CAST(SUBSTRING(binstr, 1, 8) AS DATETIME) AS OrderDate,

CAST(SUBSTRING(binstr, 9, 4) AS INT) AS OrderID,

CAST(SUBSTRING(binstr, 13, 10) AS NCHAR(5)) AS CustomerID,

CAST(SUBSTRING(binstr, 23, 8) AS DATETIME) AS RequiredDate

FROM (SELECT EmployeeID,

MAX(CAST(OrderDate AS BINARY(8))

+ CAST(OrderID AS BINARY(4))

+ CAST(CustomerID AS BINARY(10))

+ CAST(RequiredDate AS BINARY(8))) AS binstr

FROM dbo.Orders

GROUP BY EmployeeID) AS D;

The derived table D contains the maximum concatenated string for each employee. Notice
that each value was converted to the appropriate fixed-size string before concatenation based
on its datatype (DATETIME—8 bytes, INT—4 bytes, and so on).

Note When converting numbers to binary strings, only nonnegative values will preserve
their original sort behavior. As for character strings, converting them to binary values makes
them use similar sort behavior to a binary sort order.

The outer query uses SUBSTRING functions to extract the individual elements, and it con-
verts them back to their original datatypes.

The real benefit in this solution is that it scans the data only once regardless of whether you
have a good index or not. If you do, you’ll probably get an ordered scan of the index and a
sort-based aggregate. If you don’t—as is the case here—you’ll probably get a hash-based aggre-
gate, as you can see in Figure 6-1.

Figure 6-1 Execution plan for a tiebreaker query

C06623139.fm Page 320 Monday, March 6, 2006 2:07 PM

Chapter 6 Aggregating and Pivoting Data 321

Things get trickier when the sort columns and tiebreaker attributes have different sort direc-
tions within them. For example, suppose the tiebreaker was MIN(OrderID). In that case, you
would need to apply a MAX to OrderDate, and MIN to OrderID. There is a logical solution
when the attribute with the opposite direction is numeric. Say you need to calculate the MIN
value of a nonnegative integer column n, using only MAX. This can be achieved by using
<maxint> - MAX(<maxint> - n).

The following query incorporates this logical technique:

SELECT EmployeeID,

CAST(SUBSTRING(binstr, 1, 8) AS DATETIME) AS OrderDate,

2147483647 - CAST(SUBSTRING(binstr, 9, 4) AS INT) AS OrderID,

CAST(SUBSTRING(binstr, 13, 10) AS NCHAR(5)) AS CustomerID,

CAST(SUBSTRING(binstr, 23, 8) AS DATETIME) AS RequiredDate

FROM (SELECT EmployeeID,

MAX(CAST(OrderDate AS BINARY(8))

+ CAST(2147483647 - OrderID AS BINARY(4))

+ CAST(CustomerID AS BINARY(10))

+ CAST(RequiredDate AS BINARY(8))) AS binstr

FROM dbo.Orders

GROUP BY EmployeeID) AS D;

Of course, you can play with the tiebreakers you’re using in any way you like. For example,
here’s the query that will return the most recent order for each employee, using
MAX(RequiredDate), MAX(OrderID) as the tiebreaker:

SELECT EmployeeID,

CAST(SUBSTRING(binstr, 1, 8) AS DATETIME) AS OrderDate,

CAST(SUBSTRING(binstr, 9, 8) AS DATETIME) AS RequiredDate,

CAST(SUBSTRING(binstr, 17, 4) AS INT) AS OrderID,

CAST(SUBSTRING(binstr, 21, 10) AS NCHAR(5)) AS CustomerID

FROM (SELECT EmployeeID,

MAX(CAST(OrderDate AS BINARY(8))

+ CAST(RequiredDate AS BINARY(8))

+ CAST(OrderID AS BINARY(4))

+ CAST(CustomerID AS BINARY(10))

) AS binstr

FROM dbo.Orders

GROUP BY EmployeeID) AS D;

Running Aggregations
Running aggregations are aggregations of data over a sequence (typically temporal). There are
many variations of running aggregate problems, and I’ll describe several important ones here.

In my examples, I’ll use a summary table called EmpOrders that contains one row for each
employee and month, with the total quantity of orders made by that employee in that month.
Run the code in Listing 6-1 to create the EmpOrders table, and populate the table with
sample data.

C06623139.fm Page 321 Monday, March 6, 2006 2:07 PM

322 Inside Microsoft SQL Server 2005: T-SQL Querying

Listing 6-1 Creating and populating the EmpOrders table

USE tempdb;

GO

IF OBJECT_ID('dbo.EmpOrders') IS NOT NULL

DROP TABLE dbo.EmpOrders;

GO

CREATE TABLE dbo.EmpOrders

(

empid INT NOT NULL,

ordmonth DATETIME NOT NULL,

qty INT NOT NULL,

PRIMARY KEY(empid, ordmonth)

);

INSERT INTO dbo.EmpOrders(empid, ordmonth, qty)

SELECT O.EmployeeID,

CAST(CONVERT(CHAR(6), O.OrderDate, 112) + '01'

AS DATETIME) AS ordmonth,

SUM(Quantity) AS qty

FROM Northwind.dbo.Orders AS O

JOIN Northwind.dbo.[Order Details] AS OD

ON O.OrderID = OD.OrderID

GROUP BY EmployeeID,

CAST(CONVERT(CHAR(6), O.OrderDate, 112) + '01'

AS DATETIME);

Tip I will represent each month by its start date stored as a DATETIME. This will allow flexible
manipulation of the data using date-related functions. To ensure the value would be valid in
the datatype, I stored the first day of the month as the day portion. Of course, I’ll ignore
it in my calculations.

Run the following query to get the contents of the EmpOrders table, which is shown in abbre-
viated form in Table 6-3:

SELECT empid, CONVERT(VARCHAR(7), ordmonth, 121) AS ordmonth, qty

FROM dbo.EmpOrders

ORDER BY empid, ordmonth;

Table 6-3 Contents of EmpOrders Table (Abbreviated)

empid ordmonth qty

1 1996-07 121

1 1996-08 247

1 1996-09 255

1 1996-10 143

1 1996-11 318

C06623139.fm Page 322 Monday, March 6, 2006 2:07 PM

Chapter 6 Aggregating and Pivoting Data 323

I’ll discuss three types of running aggregation problems: cumulative, sliding, and year-to-
date (YTD).

Cumulative Aggregations

Cumulative aggregations accumulate data from the first element within the sequence up to
the current point. For example, imagine the following request: for each employee and month,
return the total quantity and average monthly quantity from the beginning of the employee’s
activity to the month in question.

Recall the pre–SQL Server 2005 set-based techniques for calculating row numbers; using
these techniques, you scan the same rows we need to scan now to calculate the total quanti-
ties. The difference is that for row numbers you used the aggregate COUNT, and here you’re
asked for the SUM and the AVG. I demonstrated two solutions to calculate row numbers—one
using subqueries and one using joins. In the solution using joins, I applied what I called an
expand-collapse technique. To me, the subquery solution is much more intuitive than the join
solution, with its artificial expand-collapse technique. So, when there’s no performance differ-
ence, I’d rather use subqueries. Typically, you won’t see a performance difference when only
one aggregate is involved, as the plans would be similar. However, when you request multiple
aggregates, the subquery solution might result in a plan that scans the data separately for
each aggregate. Compare this to the plan for the join solution, which typically calculates all
aggregates during a single scan of the source data.

1 1996-12 536

1 1997-01 304

1 1997-02 168

1 1997-03 275

1 1997-04 20

...

2 1996-07 50

2 1996-08 94

2 1996-09 137

2 1996-10 248

2 1996-11 237

2 1996-12 319

2 1997-01 230

2 1997-02 36

2 1997-03 151

2 1997-04 468

...

Table 6-3 Contents of EmpOrders Table (Abbreviated)

empid ordmonth qty

C06623139.fm Page 323 Monday, March 6, 2006 2:07 PM

324 Inside Microsoft SQL Server 2005: T-SQL Querying

So my choice is usually simple—use a subquery for one aggregate, and a join for multiple
aggregates. The following query applies the expand-collapse approach to produce the desired
result, which is shown in abbreviated form in Table 6-4:

SELECT O1.empid, CONVERT(VARCHAR(7), O1.ordmonth, 121) AS ordmonth,

O1.qty AS qtythismonth, SUM(O2.qty) AS totalqty,

CAST(AVG(1.*O2.qty) AS DECIMAL(12, 2)) AS avgqty

FROM dbo.EmpOrders AS O1

JOIN dbo.EmpOrders AS O2

ON O2.empid = O1.empid

AND O2.ordmonth <= O1.ordmonth

GROUP BY O1.empid, O1.ordmonth, O1.qty

ORDER BY O1.empid, O1.ordmonth;

Now let’s say that you were asked to return only one aggregate (say, total quantity). You can
safely use the subquery approach:

SELECT O1.empid, CONVERT(VARCHAR(7), O1.ordmonth, 121) AS ordmonth,

O1.qty AS qtythismonth,

Table 6-4 Cumulative Aggregates Per Employee, Month (Abbreviated)

empid ordmonth qtythismonth totalqty avgqty

1 1996-07 121 121 121.00

1 1996-08 247 368 184.00

1 1996-09 255 623 207.67

1 1996-10 143 766 191.50

1 1996-11 318 1084 216.80

1 1996-12 536 1620 270.00

1 1997-01 304 1924 274.86

1 1997-02 168 2092 261.50

1 1997-03 275 2367 263.00

1 1997-04 20 2387 238.70

...

2 1996-07 50 50 50.00

2 1996-08 94 144 72.00

2 1996-09 137 281 93.67

2 1996-10 248 529 132.25

2 1996-11 237 766 153.20

2 1996-12 319 1085 180.83

2 1997-01 230 1315 187.86

2 1997-02 36 1351 168.88

2 1997-03 151 1502 166.89

2 1997-04 468 1970 197.00

...

C06623139.fm Page 324 Monday, March 6, 2006 2:07 PM

Chapter 6 Aggregating and Pivoting Data 325

(SELECT SUM(O2.qty)

FROM dbo.EmpOrders AS O2

WHERE O2.empid = O1.empid

AND O2.ordmonth <= O1.ordmonth) AS totalqty

FROM dbo.EmpOrders AS O1

GROUP BY O1.empid, O1.ordmonth, O1.qty;

Note In both cases, the same N2 performance issues I discussed with regard to row num-
bers apply here as well. Because running aggregates typically are calculated on a fairly small
number of rows per group, you won’t be adversely affected by performance issues, assuming
you have appropriate indexes (grouping_columns, sort_columns, covering_columns).

ANSI SQL:2003 and OLAP extensions to ANSI SQL:1999 provide support for running
aggregates by means of aggregate window functions. As I mentioned earlier, SQL Server
2005 implemented the OVER clause for aggregate functions only with the PARTITION BY
clause. Per ANSI, you could provide a solution relying exclusively on window functions
like so:

SELECT empid, CONVERT(VARCHAR(7), ordmonth, 121) AS ordmonth, qty,

SUM(O2.qty) OVER(PARTITION BY empid ORDER BY ordmonth) AS totalqty,

CAST(AVG(1.*O2.qty) OVER(PARTITION BY empid ORDER BY ordmonth)

AS DECIMAL(12, 2)) AS avgqty

FROM dbo.EmpOrders;

When this code is finally supported in SQL Server, you can expect dramatic performance
improvements, and obviously much simpler queries.

You might also be requested to filter the data—for example, return monthly aggregates for
each employee only for months before the employee reached a certain target. Typically,
you’ll have a target for each employee stored in a Targets table that you’ll need to join to.
To make this example simple, I’ll assume that all employees have the same target total
quantity—1000. In practice, you’ll use the target attribute from the Targets table. Because
you need to filter an aggregate, not an attribute, you must specify the filter expression
(in this case, SUM(O2.qty) < 1000) in the HAVING clause, not the WHERE clause.
The solution is as follows and will yield the output shown in abbreviated form in
Table 6-5:

SELECT O1.empid, CONVERT(VARCHAR(7), O1.ordmonth, 121) AS ordmonth,

O1.qty AS qtythismonth, SUM(O2.qty) AS totalqty,

CAST(AVG(1.*O2.qty) AS DECIMAL(12, 2)) AS avgqty

FROM dbo.EmpOrders AS O1

JOIN dbo.EmpOrders AS O2

ON O2.empid = O1.empid

AND O2.ordmonth <= O1.ordmonth

GROUP BY O1.empid, O1.ordmonth, O1.qty

HAVING SUM(O2.qty) < 1000

ORDER BY O1.empid, O1.ordmonth;

C06623139.fm Page 325 Monday, March 6, 2006 2:07 PM

326 Inside Microsoft SQL Server 2005: T-SQL Querying

Things get a bit tricky if you also need to include the rows for those months in which the
employees reached their target. If you specify SUM(O2.qty) <= 1000 (that is, write <= instead
of <), you still won’t get the row in which the employee reached the target unless the total
through that month is exactly 1000. But remember that you have access to both the cumula-
tive total and the current month’s quantity, and using these two values together, you can solve
this problem. If you change the HAVING filter to SUM(O2.qty) – O1.qty < 1000, you will get the
months in which the employee’s total quantity, excluding the current month’s orders, had not
reached the target. In particular, the first month in which an employee reached or exceeded
the target satisfies this new criterion, and that month will appear in the results. The complete
solution follows, and it yields the output shown in abbreviated form in Table 6-6:

SELECT O1.empid, CONVERT(VARCHAR(7), O1.ordmonth, 121) AS ordmonth,

O1.qty AS qtythismonth, SUM(O2.qty) AS totalqty,

CAST(AVG(1.*O2.qty) AS DECIMAL(12, 2)) AS avgqty

FROM dbo.EmpOrders AS O1

JOIN dbo.EmpOrders AS O2

ON O2.empid = O1.empid

AND O2.ordmonth <= O1.ordmonth

GROUP BY O1.empid, O1.ordmonth, O1.qty

HAVING SUM(O2.qty) - O1.qty < 1000

ORDER BY O1.empid, O1.ordmonth;

Table 6-5 Cumulative Aggregates, Where totalqty < 1000 (Abbreviated)

empid ordmonth qtythismonth totalqty avgqty

1 1996-07 121 121 121.00

1 1996-08 247 368 184.00

1 1996-09 255 623 207.67

1 1996-10 143 766 191.50

2 1996-07 50 50 50.00

2 1996-08 94 144 72.00

2 1996-09 137 281 93.67

2 1996-10 248 529 132.25

2 1996-11 237 766 153.20

3

Table 6-6 Cumulative Aggregates, Until totalqty First Reaches or Exceeds
1000 (Abbreviated)

empid ordmonth qtythismonth totalqty avgqty

1 1996-07 121 121 121.00

1 1996-08 247 368 184.00

1 1996-09 255 623 207.67

1 1996-10 143 766 191.50

1 1996-11 318 1084 216.80

C06623139.fm Page 326 Monday, March 6, 2006 2:07 PM

Chapter 6 Aggregating and Pivoting Data 327

Note You might have another solution in mind that would seem like a plausible and sim-
pler alternative—to leave the SUM condition alone but change the join condition to O2.ord-
month < O1.ordmonth. This way, the query would select rows where the total through the
previous month did not meet the target. However, in the end, this solution is not any easier
(the AVG is hard to generate, for example); and worse, you might come up with a solution
that does not work for employees who reach the target in their first month.

Suppose you were interested in seeing results only for the specific month in which the
employee reached the target of 1000, without seeing results for preceding months. What’s
true for only those rows of Table 6-6? What you’re looking for are rows from Table 6-6 where
the total quantity is greater than or equal to 1000. Simply add this criterion to the HAVING
filter. Here’s the query, which will yield the output shown in Table 6-7:

SELECT O1.empid, CONVERT(VARCHAR(7), O1.ordmonth, 121) AS ordmonth,

O1.qty AS qtythismonth, SUM(O2.qty) AS totalqty,

CAST(AVG(1.*O2.qty) AS DECIMAL(12, 2)) AS avgqty

FROM dbo.EmpOrders AS O1

JOIN dbo.EmpOrders AS O2

ON O2.empid = O1.empid

AND O2.ordmonth <= O1.ordmonth

GROUP BY O1.empid, O1.ordmonth, O1.qty

HAVING SUM(O2.qty) - O1.qty < 1000

AND SUM(O2.qty) >= 1000

ORDER BY O1.empid, O1.ordmonth;

2 1996-07 50 50 50.00

2 1996-08 94 144 72.00

2 1996-09 137 281 93.67

2 1996-10 248 529 132.25

2 1996-11 237 766 153.20

2 1996-12 319 1085 180.83

3

Table 6-7 Cumulative Aggregates only for Months in Which totalqty First Reaches or
Exceeds 1000

empid ordmonth qtythismonth totalqty avgqty

1 1996-11 318 1084 216.80

2 1996-12 319 1085 180.83

3 1997-01 364 1304 186.29

4 1996-10 613 1439 359.75

5 1997-05 247 1213 173.29

Table 6-6 Cumulative Aggregates, Until totalqty First Reaches or Exceeds
1000 (Abbreviated)

empid ordmonth qtythismonth totalqty avgqty

C06623139.fm Page 327 Monday, March 6, 2006 2:07 PM

328 Inside Microsoft SQL Server 2005: T-SQL Querying

Sliding Aggregations

Sliding aggregates are calculated over a sliding window in a sequence (again, typically tempo-
ral), as opposed to being calculated from the beginning of the sequence until the current
point. A moving average—such as the employee’s average quantity over the last three months—
is one example of a sliding aggregate.

Note Without clarification, expressions like “last three months” are ambiguous. The last
three months could mean the previous three months (not including this month), or it could
mean the previous two months along with this month. When you get a problem like this, be
sure you know precisely what window of time you are using for aggregation—for a particular
row, exactly when does the window begin and end?

In our example, the window of time is: greater than the point in time starting three months
ago and smaller than or equal to the current point in time. Note that this definition will work
well even in cases where you track finer time granularities than a month (including day, hour,
minute, second, and millisecond). This definition also addresses implicit conversion issues due
to the accuracy level supported by SQL Server for the DATETIME datatype—3.33 millisec-
onds. It’s wiser to use > and <= predicates than the BETWEEN predicate to avoid implicit
conversion issues.

The main difference between the solution for cumulative aggregates and the solution for run-
ning aggregates is in the join condition (or in the subquery’s filter, in the case of the alternate
solution using subqueries). Instead of using O2.ordmonth <= O1.current_month, you use
O2.ordmonth > three_months_before_current AND O2.ordmonth <= current_month. In T-SQL, this
translates to the following query, yielding the output shown in abbreviated form in Table 6-8:

SELECT O1.empid,

CONVERT(VARCHAR(7), O1.ordmonth, 121) AS ordmonth,

O1.qty AS qtythismonth,

SUM(O2.qty) AS totalqty,

CAST(AVG(1.*O2.qty) AS DECIMAL(12, 2)) AS avgqty

FROM dbo.EmpOrders AS O1

JOIN dbo.EmpOrders AS O2

ON O2.empid = O1.empid

AND (O2.ordmonth > DATEADD(month, -3, O1.ordmonth)

AND O2.ordmonth <= O1.ordmonth)

GROUP BY O1.empid, O1.ordmonth, O1.qty

ORDER BY O1.empid, O1.ordmonth;

6 1997-01 64 1027 171.17

7 1997-03 191 1069 152.71

8 1997-01 305 1228 175.43

9 1997-06 161 1007 125.88

Table 6-7 Cumulative Aggregates only for Months in Which totalqty First Reaches or
Exceeds 1000

empid ordmonth qtythismonth totalqty avgqty

C06623139.fm Page 328 Monday, March 6, 2006 2:07 PM

Chapter 6 Aggregating and Pivoting Data 329

Note that this solution includes aggregates for three-month periods that don’t include three
months of actual data. If you want to return only periods with three full months accumulated,
without the first two periods which do not cover three months, you can add the criterion
MIN(O2.ordmonth) = DATEADD(month, -2, O1.ordmonth) to the HAVING filter.

Note In addition to supporting both the PARTITION BY and ORDER BY elements in the
OVER clause for window-based aggregations, ANSI also supports a ROWS clause that allows
you to request sliding aggregates. For example, here’s the query that would return the
desired result for the last sliding aggregates request (assuming the data has exactly one row
per month):

SELECT empid, CONVERT(VARCHAR(7), ordmonth, 121) AS ordmonth,

qty AS qtythismonth,

SUM(O2.qty) OVER(PARTITION BY empid ORDER BY ordmonth

ROWS 2 PRECEDING) AS totalqty,

CAST(AVG(1.*O2.qty) OVER(PARTITION BY empid ORDER BY ordmonth

ROWS 2 PRECEDING)

AS DECIMAL(12, 2)) AS avgqty

FROM dbo.EmpOrders;

Table 6-8 Sliding Aggregates Per Employee over Three Months Leading to Current
(Abbreviated)

empid ordmonth qtythismonth totalqty avgqty

1 1996-07 121 121 121.00

1 1996-08 247 368 184.00

1 1996-09 255 623 207.67

1 1996-10 143 645 215.00

1 1996-11 318 716 238.67

1 1996-12 536 997 332.33

1 1997-01 304 1158 386.00

1 1997-02 168 1008 336.00

1 1997-03 275 747 249.00

1 1997-04 20 463 154.33

...

2 1996-07 50 50 50.00

2 1996-08 94 144 72.00

2 1996-09 137 281 93.67

2 1996-10 248 479 159.67

2 1996-11 237 622 207.33

2 1996-12 319 804 268.00

2 1997-01 230 786 262.00

2 1997-02 36 585 195.00

2 1997-03 151 417 139.00

2 1997-04 468 655 218.33

...

C06623139.fm Page 329 Monday, March 6, 2006 2:07 PM

330 Inside Microsoft SQL Server 2005: T-SQL Querying

Year-To-Date (YTD)

YTD aggregates accumulate values from the beginning of a period based on some DATETIME
unit (say, a year) until the current point. The calculation is very similar to the sliding aggre-
gates solution. The only difference is the low bound provided in the query’s filter, which is
the calculation of the beginning of the year. For example, the following query returns YTD
aggregates for each employee and month, yielding the output shown in abbreviated form in
Table 6-9:

SELECT O1.empid,

CONVERT(VARCHAR(7), O1.ordmonth, 121) AS ordmonth,

O1.qty AS qtythismonth,

SUM(O2.qty) AS totalqty,

CAST(AVG(1.*O2.qty) AS DECIMAL(12, 2)) AS avgqty

FROM dbo.EmpOrders AS O1

JOIN dbo.EmpOrders AS O2

ON O2.empid = O1.empid

AND (O2.ordmonth >= CAST(CAST(YEAR(O1.ordmonth) AS CHAR(4))

+ '0101' AS DATETIME)

AND O2.ordmonth <= O1.ordmonth)

GROUP BY O1.empid, O1.ordmonth, O1.qty

ORDER BY O1.empid, O1.ordmonth;

Table 6-9 YTD Aggregates Per Employee, Month (Abbreviated)

empid ordmonth qtythismonth totalqty avgqty

1 1996-07 121 121 121.00

1 1996-08 247 368 184.00

1 1996-09 255 623 207.67

1 1996-10 143 766 191.50

1 1996-11 318 1084 216.80

1 1996-12 536 1620 270.00

1 1997-01 304 304 304.00

1 1997-02 168 472 236.00

1 1997-03 275 747 249.00

1 1997-04 20 767 191.75

...

2 1996-07 50 50 50.00

2 1996-08 94 144 72.00

2 1996-09 137 281 93.67

2 1996-10 248 529 132.25

2 1996-11 237 766 153.20

2 1996-12 319 1085 180.83

2 1997-01 230 230 230.00

2 1997-02 36 266 133.00

C06623139.fm Page 330 Monday, March 6, 2006 2:07 PM

Chapter 6 Aggregating and Pivoting Data 331

Pivoting
Pivoting is a technique that allows you to rotate rows to columns, possibly performing aggre-
gations along the way. The number of applications for pivoting is simply astounding. In this
section, I’ll present a few, including pivoting attributes in an Open Schema environment, solv-
ing relational division problems, and formatting aggregated data. Later in the chapter and also
in other chapters in the book, I’ll show additional applications. As usual for this book, I’ll
present solutions that apply to versions earlier than SQL Server 2005 as well as solutions that
use newly introduced specialized operators and therefore work only in SQL Server 2005.

Pivoting Attributes

I’ll use open schema as the scenario for pivoting attributes. Open schema is a schema design
you create to deal with frequent schema changes. The relational model and SQL do a very
good job with data manipulation (DML), which includes changing and querying data. How-
ever, SQL’s data definition language (DDL) does not make it easy to deal with frequent
schema changes. Whenever you need to add new entities, you must create new tables; when-
ever existing entities change their structures, you must add, alter, or drop columns. Such
changes usually require downtime of the affected objects, and they also bring about substan-
tial revisions to the application.

In a scenario with frequent schema changes, you can store all data in a single table, where each
attribute value resides in its own row along with the entity or object ID and the attribute name
or ID. You represent the attribute values using the datatype SQL_VARIANT to accommodate
multiple attribute types in a single column.

In my examples, I’ll use the OpenSchema table, which you can create and populate by run-
ning the code in Listing 6-2.

Listing 6-2 Creating and populating the OpenSchema table

SET NOCOUNT ON;

USE tempdb;

GO

IF OBJECT_ID('dbo.OpenSchema') IS NOT NULL

DROP TABLE dbo.OpenSchema;

GO

2 1997-03 151 417 139.00

2 1997-04 468 885 221.25

...

Table 6-9 YTD Aggregates Per Employee, Month (Abbreviated)

empid ordmonth qtythismonth totalqty avgqty

C06623139.fm Page 331 Monday, March 6, 2006 2:07 PM

332 Inside Microsoft SQL Server 2005: T-SQL Querying

CREATE TABLE dbo.OpenSchema

(

objectid INT NOT NULL,

attribute NVARCHAR(30) NOT NULL,

value SQL_VARIANT NOT NULL,

PRIMARY KEY (objectid, attribute)

);

INSERT INTO dbo.OpenSchema(objectid, attribute, value)

VALUES(1, N'attr1', CAST('ABC' AS VARCHAR(10)));

INSERT INTO dbo.OpenSchema(objectid, attribute, value)

VALUES(1, N'attr2', CAST(10 AS INT));

INSERT INTO dbo.OpenSchema(objectid, attribute, value)

VALUES(1, N'attr3', CAST('20040101' AS SMALLDATETIME));

INSERT INTO dbo.OpenSchema(objectid, attribute, value)

VALUES(2, N'attr2', CAST(12 AS INT));

INSERT INTO dbo.OpenSchema(objectid, attribute, value)

VALUES(2, N'attr3', CAST('20060101' AS SMALLDATETIME));

INSERT INTO dbo.OpenSchema(objectid, attribute, value)

VALUES(2, N'attr4', CAST('Y' AS CHAR(1)));

INSERT INTO dbo.OpenSchema(objectid, attribute, value)

VALUES(2, N'attr5', CAST(13.7 AS DECIMAL(9,3)));

INSERT INTO dbo.OpenSchema(objectid, attribute, value)

VALUES(3, N'attr1', CAST('XYZ' AS VARCHAR(10)));

INSERT INTO dbo.OpenSchema(objectid, attribute, value)

VALUES(3, N'attr2', CAST(20 AS INT));

INSERT INTO dbo.OpenSchema(objectid, attribute, value)

VALUES(3, N'attr3', CAST('20050101' AS SMALLDATETIME));

The contents of the OpenSchema table are shown in Table 6-10.

Representing data this way allows logical schema changes to be implemented without adding,
altering, or dropping tables and columns, but by using DML INSERTs, UPDATEs, and
DELETEs instead. Of course, other aspects of working with the data (such as enforcing integ-
rity, tuning, and querying) become more complex and expensive with such a representation.

Table 6-10 Contents of OpenSchema Table

objectid attribute value

1 attr1 ABC

1 attr2 10

1 attr3 2004-01-01 00:00:00.000

2 attr2 12

2 attr3 2006-01-01 00:00:00.000

2 attr4 Y

2 attr5 13.700

3 attr1 XYZ

3 attr2 20

3 attr3 2005-01-01 00:00:00.000

C06623139.fm Page 332 Monday, March 6, 2006 2:07 PM

Chapter 6 Aggregating and Pivoting Data 333

There are other approaches to deal with frequent data definition changes—for example, stor-
ing the data in XML format. However, when you weigh the advantages and disadvantages of
each representation, you might find the open schema representation demonstrated here more
favorable in some scenarios—for example, representing auction data.

Keep in mind that this representation of the data requires very complex queries even for sim-
ple requests, because different attributes of the same entity instance are spread over multiple
rows. Before you query such data, you might want to rotate it to a traditional form with one
column for each attribute—perhaps store the result in a temporary table, index it, query it, and
then get rid of the temporary table. To rotate the data from its open schema form into a tradi-
tional form, you need to use a pivoting technique.

In the following section, I’ll describe the steps involved in solving pivoting problems. I’d like
to point out that to understand the steps of the solution, it can be very helpful if you think
about query logical processing phases, which I described in detail in Chapter 1. I discussed
the query processing phases involved with the PIVOT table operator in SQL Server 2005,
but those phases apply just as well to the solution in SQL Server 2000. Moreover, in SQL 2000
the phases are more apparent in the code, while in SQL Server 2005 they are implicit.

The first step you might want to try when solving pivoting problems is to figure out how the
number of rows in the result correlates to the number of rows in the source data. Here, you
need to create a single result row out of the multiple base rows for each object. This can mean
creating a GROUP BY objectid.

As the next step in a pivoting problem, you can think in terms of the result columns. You need
a result column for each unique attribute. Because the data contains five unique attributes
(attr1, attr2, attr3, attr4, and attr5), you need five expressions in the SELECT list. Each expres-
sion is supposed to extract, out of the rows belonging to the grouped object, the value corre-
sponding to a specific attribute. This can be done with the following MAX(CASE…)
expression, which in this example is applied to the attribute attr2:

MAX(CASE WHEN attribute = 'attr2' THEN value END) AS attr2

Remember that with no ELSE clause CASE assumes an implicit ELSE NULL. The CASE expres-
sion just shown will yield NULL for rows where attribute does not equal 'attr2' and yield value
when attribute does equal ‘attr2’. This means that among the rows with a given value of objectid
(say, 1), the CASE expression would yield several NULLs and, at most, one known value (10 in
our example), which represents the value of the target attribute (attr2 in our example) for the
given objectid. The trick to extracting the one known value is to use MAX or MIN. Both ignore
NULLs and will return the one non-NULL value present, because both the minimum and
the maximum of a set containing one value is that value. Here’s the complete query that
pivots the attributes from OpenSchema, yielding the output shown in Table 6-11:

SELECT objectid,

MAX(CASE WHEN attribute = 'attr1' THEN value END) AS attr1,

MAX(CASE WHEN attribute = 'attr2' THEN value END) AS attr2,

C06623139.fm Page 333 Monday, March 6, 2006 2:07 PM

334 Inside Microsoft SQL Server 2005: T-SQL Querying

MAX(CASE WHEN attribute = 'attr3' THEN value END) AS attr3,

MAX(CASE WHEN attribute = 'attr4' THEN value END) AS attr4,

MAX(CASE WHEN attribute = 'attr5' THEN value END) AS attr5

FROM dbo.OpenSchema

GROUP BY objectid;

Note To write this query, you have to know the names of the attributes. If you don’t, you’ll
need to construct the query string dynamically.

More Info For details about dynamic pivoting (and unpivoting), please refer to Inside
Microsoft SQL Server 2005: T-SQL Programming (Microsoft Press, 2006).

This technique for pivoting data is very efficient because it scans the base table only once.

SQL Server 2005 introduces PIVOT, a native specialized operator for pivoting. I have to say
that I find it very confusing and nonintuitive. I don’t see much advantage in using it, except
that it allows for shorter code. It doesn’t support dynamic pivoting, and underneath the cov-
ers, it applies very similar logic to the one I presented in the last solution. So you probably
won’t even find noticeable performance differences. At any rate, here’s how you would pivot
the OpenSchema data using the PIVOT operator:

SELECT objectid, attr1, attr2, attr3, attr4, attr5

FROM dbo.OpenSchema

PIVOT(MAX(value) FOR attribute

IN([attr1],[attr2],[attr3],[attr4],[attr5])) AS P;

Within this solution, you can identify all the elements I used in the previous solution. The
inputs to the PIVOT operator are as follows:

■ The aggregate that will apply to the values in the group. In our case, it’s MAX(value),
which extracts the single non-NULL value corresponding to the target attribute. In other
cases, you might have more than one non-NULL value per group and want a different
aggregate (for example, SUM or AVG).

■ Following the FOR keyword, the source column holding the target column names
(attribute, in our case).

■ The list of actual target column names in parentheses following the keyword IN.

Table 6-11 Pivoted OpenSchema

objectid attr1 attr2 attr3 attr4 attr5

1 ABC 10 2004-01-01 00:00:00.000 NULL NULL

2 NULL 12 2006-01-01 00:00:00.000 Y 13.700

3 XYZ 20 2005-01-01 00:00:00.000 NULL NULL

C06623139.fm Page 334 Monday, March 6, 2006 2:07 PM

Chapter 6 Aggregating and Pivoting Data 335

The tricky bit here is that there’s no explicit GROUP BY clause, but implicit grouping does
take place. It’s as if the pivoting activity is based on groups defined by the list of all columns
that were not mentioned in PIVOT’s inputs (in the parentheses) following the PIVOT key-
word). In our case, objectid is the column that defines the groups.

Caution Because all unspecified columns define the groups, unintentionally, you might
end up with undesired grouping. To solve this, use a derived table or a common table
expression (CTE) that returns only the columns of interest, and apply PIVOT to that table
expression and not to the base table. I’ll demonstrate this shortly.

Tip The input to the aggregate function must be a base column with no manipulation—it
cannot be an expression (for example: SUM(qty * price)). If you want to provide the aggregate
function with an expression as input, create a derived table or CTE where you assign the
expression with a column alias (qty * price AS value), and in the outer query use that column
as input to PIVOT’s aggregate function (SUM(value)).

Also, you cannot rotate attributes from more than one column (the column that appears
after the FOR keyword. If you need to pivot more that one column’s attributes (say, empid
and YEAR(orderdate)), you can use a similar approach to the previous suggestion; create a
derived table or a CTE where you concatenate the values from all columns you want to
rotate and assign the expression with a column alias (CAST(empid AS VARCHAR(10)) + ‘_’ +
CAST(YEAR(orderdate) AS CHAR(4)) AS empyear). Then, in the outer query, specify that column
after PIVOT’s FOR keyword (FOR empyear IN([1_2004], [1_2005], [1_2006], [2_2004], …)).

Relational Division

Pivoting can also be used to solve relational division problems when the number of elements
in the divisor set is fairly small. In my examples, I’ll use the OrderDetails table, which you cre-
ate and populate by running the code in Listing 6-3.

Listing 6-3 Creating and populating the OrderDetails table

USE tempdb;

GO

IF OBJECT_ID('dbo.OrderDetails') IS NOT NULL

DROP TABLE dbo.OrderDetails;

GO

CREATE TABLE dbo.OrderDetails

(

orderid VARCHAR(10) NOT NULL,

productid INT NOT NULL,

PRIMARY KEY(orderid, productid)

/* other columns */

);

C06623139.fm Page 335 Monday, March 6, 2006 2:07 PM

336 Inside Microsoft SQL Server 2005: T-SQL Querying

INSERT INTO dbo.OrderDetails(orderid, productid) VALUES('A', 1);

INSERT INTO dbo.OrderDetails(orderid, productid) VALUES('A', 2);

INSERT INTO dbo.OrderDetails(orderid, productid) VALUES('A', 3);

INSERT INTO dbo.OrderDetails(orderid, productid) VALUES('A', 4);

INSERT INTO dbo.OrderDetails(orderid, productid) VALUES('B', 2);

INSERT INTO dbo.OrderDetails(orderid, productid) VALUES('B', 3);

INSERT INTO dbo.OrderDetails(orderid, productid) VALUES('B', 4);

INSERT INTO dbo.OrderDetails(orderid, productid) VALUES('C', 3);

INSERT INTO dbo.OrderDetails(orderid, productid) VALUES('C', 4);

INSERT INTO dbo.OrderDetails(orderid, productid) VALUES('D', 4);

A classic relational division problem is to return orders that contain a certain basket
of products—say, products 2, 3, and 4. You use a pivoting technique to rotate only the relevant
products into separate columns for each order. Instead of returning an actual attribute value,
you produce a 1 if the product exists in the order and a 0 otherwise. Create a derived table
out of the pivot query, and in the outer query filter only orders that contain a 1 in all product
columns. Here’s the full query, which correctly returns orders A and B:

SELECT orderid

FROM (SELECT

orderid,

MAX(CASE WHEN productid = 2 THEN 1 END) AS P2,

MAX(CASE WHEN productid = 3 THEN 1 END) AS P3,

MAX(CASE WHEN productid = 4 THEN 1 END) AS P4

FROM dbo.OrderDetails

GROUP BY orderid) AS P

WHERE P2 = 1 AND P3 = 1 AND P4 = 1;

If you run only the derived table query, you get the pivoted products for each order as shown
in Table 6-12.

To answer the request at hand using the new PIVOT operator, use the following query:

SELECT orderid

FROM (SELECT *

FROM dbo.OrderDetails

PIVOT(MAX(productid) FOR productid IN([2],[3],[4])) AS P) AS T

WHERE [2] = 2 AND [3] = 3 AND [4] = 4;

The aggregate function must accept a column as input, so I provided the productid itself. This
means that if the product exists within an order, the corresponding value will contain the
actual productid and not 1. That’s why the filter looks a bit different here.

Table 6-12 Contents of Derived Table P

orderid P2 P3 P4

A 1 1 1

B 1 1 1

C NULL 1 1

D NULL NULL 1

C06623139.fm Page 336 Monday, March 6, 2006 2:07 PM

Chapter 6 Aggregating and Pivoting Data 337

Note that you can make both queries more intuitive and similar to each other in their logic by
using the COUNT aggregate instead of MAX. This way, both queries would produce a 1 where
the product exists and a 0 where it doesn’t (instead of NULL). Here’s what the SQL Server
2000 query would look like:

SELECT orderid

FROM (SELECT

orderid,

COUNT(CASE WHEN productid = 2 THEN 1 END) AS P2,

COUNT(CASE WHEN productid = 3 THEN 1 END) AS P3,

COUNT(CASE WHEN productid = 4 THEN 1 END) AS P4

FROM dbo.OrderDetails

GROUP BY orderid) AS P

WHERE P2 = 1 AND P3 = 1 AND P4 = 1;

And here’s the query you would use in SQL Server 2005:

SELECT orderid

FROM (SELECT *

FROM dbo.OrderDetails

PIVOT(COUNT(productid) FOR productid IN([2],[3],[4])) AS P) AS T

WHERE [2] = 1 AND [3] = 1 AND [4] = 1;

Aggregating Data

You can also use a pivoting technique to format aggregated data, typically for reporting pur-
poses. In my examples, I’ll use the Orders table, which you create and populate by running
the code in Listing 6-4.

Listing 6-4 Creating and populating the Orders table

USE tempdb;

GO

IF OBJECT_ID('dbo.Orders') IS NOT NULL

DROP TABLE dbo.Orders;

GO

CREATE TABLE dbo.Orders

(

orderid int NOT NULL PRIMARY KEY NONCLUSTERED,

orderdate datetime NOT NULL,

empid int NOT NULL,

custid varchar(5) NOT NULL,

qty int NOT NULL

);

CREATE UNIQUE CLUSTERED INDEX idx_orderdate_orderid

ON dbo.Orders(orderdate, orderid);

INSERT INTO dbo.Orders(orderid, orderdate, empid, custid, qty)

VALUES(30001, '20020802', 3, 'A', 10);

C06623139.fm Page 337 Monday, March 6, 2006 2:07 PM

338 Inside Microsoft SQL Server 2005: T-SQL Querying

INSERT INTO dbo.Orders(orderid, orderdate, empid, custid, qty)

VALUES(10001, '20021224', 1, 'A', 12);

INSERT INTO dbo.Orders(orderid, orderdate, empid, custid, qty)

VALUES(10005, '20021224', 1, 'B', 20);

INSERT INTO dbo.Orders(orderid, orderdate, empid, custid, qty)

VALUES(40001, '20030109', 4, 'A', 40);

INSERT INTO dbo.Orders(orderid, orderdate, empid, custid, qty)

VALUES(10006, '20030118', 1, 'C', 14);

INSERT INTO dbo.Orders(orderid, orderdate, empid, custid, qty)

VALUES(20001, '20030212', 2, 'B', 12);

INSERT INTO dbo.Orders(orderid, orderdate, empid, custid, qty)

VALUES(40005, '20040212', 4, 'A', 10);

INSERT INTO dbo.Orders(orderid, orderdate, empid, custid, qty)

VALUES(20002, '20040216', 2, 'C', 20);

INSERT INTO dbo.Orders(orderid, orderdate, empid, custid, qty)

VALUES(30003, '20040418', 3, 'B', 15);

INSERT INTO dbo.Orders(orderid, orderdate, empid, custid, qty)

VALUES(30004, '20020418', 3, 'C', 22);

INSERT INTO dbo.Orders(orderid, orderdate, empid, custid, qty)

VALUES(30007, '20020907', 3, 'D', 30);

The contents of the Orders table are shown in Table 6-13.

Suppose you want to return a row for each customer, with the total yearly quantities in a dif-
ferent column for each year. You use a pivoting technique very similar to the previous ones
I showed, only this time instead of using a MAX, you use a SUM aggregate, which will
return the output shown in Table 6-14:

SELECT custid,

SUM(CASE WHEN orderyear = 2002 THEN qty END) AS [2002],

SUM(CASE WHEN orderyear = 2003 THEN qty END) AS [2003],

SUM(CASE WHEN orderyear = 2004 THEN qty END) AS [2004]

FROM (SELECT custid, YEAR(orderdate) AS orderyear, qty

FROM dbo.Orders) AS D

GROUP BY custid;

Table 6-13 Contents of Orders Table

orderid orderdate empid custid qty

30004 2002-04-18 00:00:00.000 3 C 22

30001 2002-08-02 00:00:00.000 3 A 10

30007 2002-09-07 00:00:00.000 3 D 30

10001 2002-12-24 00:00:00.000 1 A 12

10005 2002-12-24 00:00:00.000 1 B 20

40001 2003-01-09 00:00:00.000 4 A 40

10006 2003-01-18 00:00:00.000 1 C 14

20001 2003-02-12 00:00:00.000 2 B 12

40005 2004-02-12 00:00:00.000 4 A 10

20002 2004-02-16 00:00:00.000 2 C 20

30003 2004-04-18 00:00:00.000 3 B 15

C06623139.fm Page 338 Monday, March 6, 2006 2:07 PM

Chapter 6 Aggregating and Pivoting Data 339

Here you can see the use of a derived table to isolate only the relevant elements for the pivot-
ing activity (custid, orderyear, qty).

One of the main issues with this pivoting solution is that you might end up with lengthy
query strings when the number of elements you need to rotate is large. In an effort to shorten
the query string, you can use a matrix table that contains a column and a row for each
attribute that you need to rotate (orderyear, in this case). Only column values in the intersec-
tions of corresponding rows and columns contain the value 1, and the other column values
are populated with a NULL or a 0, depending on your needs. Run the code in Listing 6-5
to create and populate the Matrix table.

Listing 6-5 Creating and populating the Matrix table

USE tempdb;

GO

IF OBJECTPROPERTY(OBJECT_ID('dbo.Matrix'), 'IsUserTable') = 1

DROP TABLE dbo.Matrix;

GO

CREATE TABLE dbo.Matrix

(

orderyear INT NOT NULL PRIMARY KEY,

y2002 INT NULL,

y2003 INT NULL,

y2004 INT NULL

);

INSERT INTO dbo.Matrix(orderyear, y2002) VALUES(2002, 1);

INSERT INTO dbo.Matrix(orderyear, y2003) VALUES(2003, 1);

INSERT INTO dbo.Matrix(orderyear, y2004) VALUES(2004, 1);

The contents of the Matrix table are shown in Table 6-15.

Table 6-14 Total Yearly Quantities per Customer

custid 2002 2003 2004

A 22 40 10

B 20 12 15

C 22 14 20

D 30 NULL NULL

Table 6-15 Contents of Matrix Table

orderyear y2002 y2003 y2004

2002 1 NULL NULL

2003 NULL 1 NULL

2004 NULL NULL 1

C06623139.fm Page 339 Monday, March 6, 2006 2:07 PM

340 Inside Microsoft SQL Server 2005: T-SQL Querying

You join the base table (or table expression) with the Matrix table based on a match in
orderyear. This means that each row from the base table will be matched with one row from
Matrix—the one with the same orderyear. In that row, only the corresponding orderyear’s
column value will contain a 1. So you can substitute the expression

SUM(CASE WHEN orderyear = <some_year> THEN qty END) AS [<some_year>]

with the logically equivalent expression

SUM(qty*y<some_year>) AS [<some_year>]

Here’s what the full query looks like:

SELECT custid,

SUM(qty*y2002) AS [2002],

SUM(qty*y2003) AS [2003],

SUM(qty*y2004) AS [2004]

FROM (SELECT custid, YEAR(orderdate) AS orderyear, qty

FROM dbo.Orders) AS D

JOIN dbo.Matrix AS M ON D.orderyear = M.orderyear

GROUP BY custid;

If you need the number of orders instead of the sum of qty, in the original solution you pro-
duce a 1 instead of the qty column for each order, and use the COUNT aggregate function,
which will produce the output shown in Table 6-16:

SELECT custid,

COUNT(CASE WHEN orderyear = 2002 THEN 1 END) AS [2002],

COUNT(CASE WHEN orderyear = 2003 THEN 1 END) AS [2003],

COUNT(CASE WHEN orderyear = 2004 THEN 1 END) AS [2004]

FROM (SELECT custid, YEAR(orderdate) AS orderyear

FROM dbo.Orders) AS D

GROUP BY custid;

With the Matrix table, simply specify the column corresponding to the target year:

SELECT custid,

COUNT(y2002) AS [2002],

COUNT(y2003) AS [2003],

COUNT(y2004) AS [2004]

FROM (SELECT custid, YEAR(orderdate) AS orderyear

FROM dbo.Orders) AS D

JOIN dbo.Matrix AS M ON D.orderyear = M.orderyear

GROUP BY custid;

Table 6-16 Count of Yearly Quantities per Customer

custid 2002 2003 2004

A 2 1 1

B 1 1 1

C 1 1 1

D 1 0 0

C06623139.fm Page 340 Monday, March 6, 2006 2:07 PM

Chapter 6 Aggregating and Pivoting Data 341

Of course, using the PIVOT operator in SQL Server 2005, the query strings are short to begin
with. Here’s the query using the PIVOT operator to calculate total yearly quantities per
customer:

SELECT *

FROM (SELECT custid, YEAR(orderdate) AS orderyear, qty

FROM dbo.Orders) AS D

PIVOT(SUM(qty) FOR orderyear IN([2002],[2003],[2004])) AS P;

And here’s a query that counts the orders:

SELECT *

FROM (SELECT custid, YEAR(orderdate) AS orderyear

FROM dbo.Orders) AS D

PIVOT(COUNT(orderyear) FOR orderyear IN([2002],[2003],[2004])) AS P;

Remember that static queries performing pivoting require you to know ahead of time the list
of attributes you’re going to rotate. For dynamic pivoting, you need to construct the query
string dynamically.

Unpivoting
Unpivoting is the opposite of pivoting—namely, rotating columns to rows. Unpivoting is usu-
ally used to normalize data, but it has other applications as well.

Note Unpivoting is not an exact inverse of pivoting, as it won’t necessarily allow you to
regenerate source rows that were pivoted. However, for the sake of simplicity, think of it as
the opposite of pivoting.

In my examples, I’ll use the PvtCustOrders table, which you create and populate by running
the code in Listing 6-6.

Listing 6-6 Creating and populating the PvtCustOrders table

USE tempdb;

GO

IF OBJECT_ID('dbo.PvtCustOrders') IS NOT NULL

DROP TABLE dbo.PvtCustOrders;

GO

SELECT *

INTO dbo.PvtCustOrders

FROM (SELECT custid, YEAR(orderdate) AS orderyear, qty

FROM dbo.Orders) AS D

PIVOT(SUM(qty) FOR orderyear IN([2002],[2003],[2004])) AS P;

C06623139.fm Page 341 Monday, March 6, 2006 2:07 PM

342 Inside Microsoft SQL Server 2005: T-SQL Querying

The contents of the PvtCustOrders table are shown in Table 6-17.

The goal in this case will be to generate a result row for each customer and year, containing the
customer ID (custid), order year (orderyear), and quantity (qty).

I’ll start with a solution that applies to versions earlier than SQL Server 2005. Here as well, try
to think in terms of query logical processing as described in Chapter 1.

The first and most important step in the solution is to generate three copies of each base row—
one for each year. This can be achieved by performing a cross join between the base table and
a virtual auxiliary table that has one row per year. The SELECT list can then return the custid
and orderyear, and also calculate the target year’s qty with the following CASE expression:

CASE orderyear

WHEN 2002 THEN [2002]

WHEN 2003 THEN [2003]

WHEN 2004 THEN [2004]

END AS qty

You achieve unpivoting this way, but you’ll also get rows corresponding to NULL values in the
source table (for example, for customer D in years 2003 and 2004). To eliminate those rows,
create a derived table out of the solution query and, in the outer query, eliminate the rows
with the NULL in the qty column.

Note In practice, you’d typically store a 0 and not a NULL as the quantity for a customer
with no orders in a certain year; the order quantity is known to be zero, and not unknown.
However, I used NULLs here to demonstrate the treatment of NULLs, which is a very common
need in unpivoting problems.

Here’s the complete solution, which returns the desired output as shown in Table 6-18:

SELECT custid, orderyear, qty

FROM (SELECT custid, orderyear,

CASE orderyear

WHEN 2002 THEN [2002]

WHEN 2003 THEN [2003]

WHEN 2004 THEN [2004]

END AS qty

Table 6-17 Contents of PvtCustOrders Table

custid 2002 2003 2004

A 22 40 10

B 20 12 15

C 22 14 20

D 30 NULL NULL

C06623139.fm Page 342 Monday, March 6, 2006 2:07 PM

Chapter 6 Aggregating and Pivoting Data 343

FROM dbo.PvtCustOrders,

(SELECT 2002 AS orderyear

UNION ALL SELECT 2003

UNION ALL SELECT 2004) AS OrderYears) AS D

WHERE qty IS NOT NULL;

In SQL Server 2005, things are dramatically simpler. You use the UNPIVOT table operator as
follows:

SELECT custid, orderyear, qty

FROM dbo.PvtCustOrders

UNPIVOT(qty FOR orderyear IN([2002],[2003],[2004])) AS U

Unlike the PIVOT operator, I find the UNPIVOT operator simple and intuitive, and obviously
it requires significantly less code. UNPIVOT’s first input is the target column name to hold the
rotated attribute values (qty). Then, following the FOR keyword, you specify the target column
name to hold the rotated column names (orderyear). Finally, in the parentheses of the IN
clause, you specify the source column names that you want to rotate ([2002],[2003],[2004]).

Tip All source attributes that are unpivoted must share the same datatype. If you want to
unpivot attributes defined with different datatypes, create a derived table or CTE where
you first convert all those attributes to SQL_VARIANT. The target column that will hold
unpivoted values will also be defined as SQL_VARIANT, and within that column, the values
will preserve their original types.

Note Like PIVOT, UNPIVOT requires a static list of column names to be rotated.

Table 6-18 Unpivoted Total Quantities per Customer and Order Year

custid orderyear qty

A 2002 22

B 2002 20

C 2002 22

D 2002 30

A 2003 40

B 2003 12

C 2003 14

A 2004 10

B 2004 15

C 2004 20

C06623139.fm Page 343 Monday, March 6, 2006 2:07 PM

344 Inside Microsoft SQL Server 2005: T-SQL Querying

Custom Aggregations
Custom aggregations are aggregations that are not provided as built-in aggregate functions—
for example, concatenating strings, calculating products, performing bitwise manipulations,
calculating medians, and many others. In this section, I’ll provide solutions to several custom
aggregate requests. Some techniques that I’ll cover are generic—in the sense that you can use
similar logic for other aggregate requests—while others are specific to one kind of aggregate
request.

More Info One of the generic custom aggregate techniques uses cursors. For details
about cursors, including handling of custom aggregates with cursors, please refer to Inside
Microsoft SQL Server 2005: T-SQL Programming.

In my examples, I’ll use the generic Groups table, which you create and populate by running
the code in Listing 6-7.

Listing 6-7 Creating and populating the Groups table

USE tempdb;

GO

IF OBJECT_ID('dbo.Groups') IS NOT NULL

DROP TABLE dbo.Groups;

GO

CREATE TABLE dbo.Groups

(

groupid VARCHAR(10) NOT NULL,

memberid INT NOT NULL,

string VARCHAR(10) NOT NULL,

val INT NOT NULL,

PRIMARY KEY (groupid, memberid)

);

INSERT INTO dbo.Groups(groupid, memberid, string, val)

VALUES('a', 3, 'stra1', 6);

INSERT INTO dbo.Groups(groupid, memberid, string, val)

VALUES('a', 9, 'stra2', 7);

INSERT INTO dbo.Groups(groupid, memberid, string, val)

VALUES('b', 2, 'strb1', 3);

INSERT INTO dbo.Groups(groupid, memberid, string, val)

VALUES('b', 4, 'strb2', 7);

INSERT INTO dbo.Groups(groupid, memberid, string, val)

VALUES('b', 5, 'strb3', 3);

INSERT INTO dbo.Groups(groupid, memberid, string, val)

VALUES('b', 9, 'strb4', 11);

INSERT INTO dbo.Groups(groupid, memberid, string, val)

VALUES('c', 3, 'strc1', 8);

INSERT INTO dbo.Groups(groupid, memberid, string, val)

VALUES('c', 7, 'strc2', 10);

INSERT INTO dbo.Groups(groupid, memberid, string, val)

VALUES('c', 9, 'strc3', 12);

C06623139.fm Page 344 Monday, March 6, 2006 2:07 PM

Chapter 6 Aggregating and Pivoting Data 345

The contents of the Groups table are shown in Table 6-19.

The Groups table has a column representing the group (groupid), a column representing a
unique identifier within the group (memberid), and some value columns (string and val) that
will need to be aggregated. I like to use such a generic form of data because it allows you to
focus on the techniques and not on the data. Note that this is merely a generic form of a table
containing data that you want to aggregate. For example, it could represent a Sales table where
groupid stands for empid, val stands for qty, and so on.

Custom Aggregations Using Pivoting

One key technique for solving custom aggregate problems is pivoting. You basically pivot the
values that need to participate in the aggregate calculation; when they all appear in the same
result row, you perform the calculation as a linear one across the columns. For two reasons,
this pivoting technique is limited to situations where there is a small number of elements per
group. First, with a large number of elements you’ll end up with very lengthy query strings,
which is not realistic. Second, unless you have a sequencing column within the group, you’ll
need to calculate row numbers that will be used to identify the position of elements within the
group. For example, if you need to concatenate all values from the string column per group,
what will you specify as the pivoted attribute list? The values in the memberid column are not
known ahead of time, plus they differ in each group. Row numbers representing positions
within the group solve your problem. Remember that in versions prior to SQL Server 2005,
the calculation of row numbers is expensive for large groups.

String Concatenation Using Pivoting

As the first example, the following query calculates an aggregate string concatenation over
the column string for each group with a pivoting technique, which generates the output
shown in Table 6-20:

SELECT groupid,

MAX(CASE WHEN rn = 1 THEN string ELSE '' END)

+ MAX(CASE WHEN rn = 2 THEN ',' + string ELSE '' END)

+ MAX(CASE WHEN rn = 3 THEN ',' + string ELSE '' END)

+ MAX(CASE WHEN rn = 4 THEN ',' + string ELSE '' END) AS string

Table 6-19 Contents of Groups Table

groupid memberid string val

a 3 stra1 6

a 9 stra2 7

b 2 strb1 3

b 4 strb2 7

b 5 strb3 3

b 9 strb4 11

c 3 strc1 8

c 7 strc2 10

c 9 strc3 12

C06623139.fm Page 345 Monday, March 6, 2006 2:07 PM

346 Inside Microsoft SQL Server 2005: T-SQL Querying

FROM (SELECT groupid, string,

(SELECT COUNT(*)

FROM dbo.Groups AS B

WHERE B.groupid = A.groupid

AND B.memberid <= A.memberid) AS rn

FROM dbo.Groups AS A) AS D

GROUP BY groupid;

The query that generates the derived table D calculates a row number within the group based
on memberid order. The outer query pivots the values based on the row numbers, and it
performs linear concatenation. I’m assuming here that there are at most four rows per group,
so I specified four MAX(CASE…) expressions. You need as many MAX(CASE…) expressions
as the maximum number of elements you anticipate.

Note It’s important to return an empty string rather than a NULL in the ELSE clause of the CASE
expressions. Remember that a concatenation between a known value and a NULL yields a NULL.

Aggregate Product Using Pivoting

In a similar manner, you can calculate the product of the values in the val column for each
group, yielding the output shown in Table 6-21:

SELECT groupid,

MAX(CASE WHEN rn = 1 THEN val ELSE 1 END)

* MAX(CASE WHEN rn = 2 THEN val ELSE 1 END)

* MAX(CASE WHEN rn = 3 THEN val ELSE 1 END)

* MAX(CASE WHEN rn = 4 THEN val ELSE 1 END) AS product

FROM (SELECT groupid, val,

(SELECT COUNT(*)

FROM dbo.Groups AS B

WHERE B.groupid = A.groupid

AND B.memberid <= A.memberid) AS rn

FROM dbo.Groups AS A) AS D

GROUP BY groupid;

Table 6-20 Concatenated Strings

groupid string

a stra1,stra2

b strb1,strb2,strb3,strb4

c strc1,strc2,strc3

Table 6-21 Aggregate Product

groupid product

a 42

b 693

c 960

C06623139.fm Page 346 Monday, March 6, 2006 2:07 PM

Chapter 6 Aggregating and Pivoting Data 347

The need for an aggregate product is common in financial applications—for example, to calcu-
late compound interest rates.

User Defined Aggregates (UDA)

SQL Server 2005 introduces the ability to create your own user-defined aggregates (UDA).
You write UDAs in a .NET language of your choice (for example, C# or Microsoft Visual Basic
.NET), and you use them in T-SQL. This book is dedicated to T-SQL and not to common lan-
guage runtime (CLR), so it won’t conduct lengthy discussions explaining CLR UDAs. Rather,
you’ll be provided with a couple of examples with step-by-step instructions and, of course,
the T-SQL interfaces involved. Examples will be provided in both C# and Visual Basic.

CLR Code in a Database

This section discusses .NET common language runtime (CLR) integration in SQL Server
2005; therefore, it’s appropriate to spend a couple of words explaining the reasoning
behind CLR integration in a database. It is also important to identify the scenarios where
using CLR objects is more appropriate than using T-SQL.

Developing in .NET languages such as C# and Visual Basic .NET gives you an incredibly
rich programming model. The .NET Framework includes literally thousands of prepared
classes, and it is up to you to make astute use of them. .NET languages are not just data-
oriented like SQL, so you are not as limited. For example, regular expressions are
extremely useful for validating data, and they are fully supported in .NET. SQL languages
are set-oriented and slow to perform row-oriented (row-by-row or one-row-at-a-time) oper-
ations. Sometimes you need row-oriented operations inside the database; moving away
from cursors to CLR code should improve the performance. Another benefit of CLR code
is that it can be much faster than T-SQL code in computationally intensive calculations.

Although SQL Server supported programmatic extensions even before CLR integration
was introduced, CLR integration in .NET code is superior in a number of ways.

For example, you could add functionality to earlier versions of SQL Server using
extended stored procedures. However, such procedures can compromise the integrity of
SQL Server processes because their memory and thread management is not integrated
well enough with SQL Server’s resource management. .NET code is managed by the CLR
inside SQL Server, and because the CLR itself is managed by SQL Server, it is much
safer to use than extended procedure code.

T-SQL—a set-oriented language—was designed mainly to deal with data and is optimized for
data manipulation. You should not rush to translate all your T-SQL code to CLR code.
T-SQL is still SQL Server’s primary language. Data access can be achieved through T-SQL
only. If an operation can be expressed as a set-oriented one, you should program it in T-SQL.

There’s another important decision that you need to make before you start using CLR
code inside SQL Server. You need to decide where your CLR code is going to run—at the
server or at the client. CLR code is typically faster and more flexible than T-SQL for

C06623139.fm Page 347 Monday, March 6, 2006 2:07 PM

348 Inside Microsoft SQL Server 2005: T-SQL Querying

computations, and thus it extends the opportunities for server-side computations. How-
ever, the server side is typically a single working box, and load balancing at the data tier
is still in its infancy. Therefore, you should consider whether it would be more sensible
to process those computations at the client side.

With CLR code, you can write stored procedures, triggers, user-defined functions, user-
defined types, and user-defined aggregate functions. The last two objects can’t be written
with declarative T-SQL; rather, they can be written only with CLR code. A User-Defined
Type (UDT) is the most complex CLR object type and demands extensive coverage.

More Info For details about programming CLR UDTs, as well as programming CLR
routines, please refer to Inside Microsoft SQL Server 2005: T-SQL Programming.

Let’s start with a concrete implementation of two UDAs. The steps involved in creating a CLR-
based UDA are as follows:

■ Define the UDA as a class in a .NET language.

■ Compile the class you defined to build a CLR assembly.

■ Register the assembly in SQL Server using the CREATE ASSEMBLY command.

■ Use the CREATE AGGREGATE command in T-SQL to create the UDA that references the
registered assembly.

Note You can register an assembly and create a CLR object from Microsoft Visual
Studio 2005 directly, using the project deployment option (Build>Deploy menu item).
This section will show you how to deploy CLR objects directly from Visual Studio. Also
be aware that direct deployment from Visual Studio is supported only with the Profes-
sional edition or higher; if you’re using the Standard edition, your only option is explicit
deployment in SQL Server.

This section will provide examples for creating aggregate string concatenation and aggregate
product functions in both C# and Visual Basic .NET. You can find the code for the C# classes
in Listing 6-8 and the code for the Visual Basic .NET classes in Listing 6-9. You’ll be provided
with the requirements for a CLR UDA alongside the development of a UDA.

Listing 6-8 C# UDAs Code

using System;

using System.Data;

using System.Data.SqlClient;

using System.Data.SqlTypes;

using Microsoft.SqlServer.Server;

using System.Text;

using System.IO;

using System.Runtime.InteropServices;

C06623139.fm Page 348 Monday, March 6, 2006 2:07 PM

Chapter 6 Aggregating and Pivoting Data 349

[Serializable]

[SqlUserDefinedAggregate(

Format.UserDefined, // use user-defined serialization

IsInvariantToDuplicates = false, // duplicates make difference

// for the result

IsInvariantToNulls = true, // don't care about NULLs

IsInvariantToOrder = false, // whether order makes difference

IsNullIfEmpty = false, // do not yield a NULL

// for a set of zero strings

MaxByteSize = 8000)] // maximum size in bytes of persisted value

public struct CSStrAgg : IBinarySerialize

{

private StringBuilder sb;

private bool firstConcat;

public void Init()

{

this.sb = new StringBuilder();

this.firstConcat = true;

}

public void Accumulate(SqlString s)

{

if (s.IsNull)

{

return; // simply skip Nulls approach

}

if (this.firstConcat)

{

this.sb.Append(s.Value);

this.firstConcat = false;

}

else

{

this.sb.Append(",");

this.sb.Append(s.Value);

}

}

public void Merge(CSStrAgg Group)

{

this.sb.Append(Group.sb);

}

public SqlString Terminate()

{

return new SqlString(this.sb.ToString());

}

public void Read(BinaryReader r)

{

sb = new StringBuilder(r.ReadString());

}

C06623139.fm Page 349 Monday, March 6, 2006 2:07 PM

350 Inside Microsoft SQL Server 2005: T-SQL Querying

public void Write(BinaryWriter w)

{

if (this.sb.Length > 4000) // check we don't

// go over 8000 bytes

// simply return first 8000 bytes

w.Write(this.sb.ToString().Substring(0, 4000));

else

w.Write(this.sb.ToString());

}

} // end CSStrAgg

[Serializable]

[StructLayout(LayoutKind.Sequential)]

[SqlUserDefinedAggregate(

Format.Native, // use native serialization

IsInvariantToDuplicates = false, // duplicates make difference

// for the result

IsInvariantToNulls = true, // don't care about NULLs

IsInvariantToOrder = false)] // whether order makes difference

public class CSProdAgg

{

private SqlInt64 si;

public void Init()

{

si = 1;

}

public void Accumulate(SqlInt64 v)

{

if (v.IsNull || si.IsNull) // Null input = Null output approach

{

si = SqlInt64.Null;

return;

}

if (v == 0 || si == 0) // to prevent an exception in next if

{

si = 0;

return;

}

// stop before we reach max value

if (Math.Abs(v.Value) <= SqlInt64.MaxValue / Math.Abs(si.Value))

{

si = si * v;

}

else

{

si = 0; // if we reach too big value, return 0

}

}

C06623139.fm Page 350 Monday, March 6, 2006 2:07 PM

Chapter 6 Aggregating and Pivoting Data 351

public void Merge(CSProdAgg Group)

{

Accumulate(Group.Terminate());

}

public SqlInt64 Terminate()

{

return (si);

}

} // end CSProdAgg

Listing 6-9 Visual Basic .NET UDAs Code

Imports System

Imports System.Data

Imports System.Data.SqlTypes

Imports Microsoft.SqlServer.Server

Imports System.Text

Imports System.IO

Imports System.Runtime.InteropServices

<Serializable(), _

SqlUserDefinedAggregate(_

Format.UserDefined, _

IsInvariantToDuplicates:=True, _

IsInvariantToNulls:=True, _

IsInvariantToOrder:=False, _

IsNullIfEmpty:=False, _

MaxByteSize:=8000)> _

Public Class VBStrAgg

Implements IBinarySerialize

Private sb As StringBuilder

Private firstConcat As Boolean = True

Public Sub Init()

Me.sb = New StringBuilder()

Me.firstConcat = True

End Sub

Public Sub Accumulate(ByVal s As SqlString)

If s.IsNull Then

Return

End If

If Me.firstConcat = True Then

Me.sb.Append(s.Value)

Me.firstConcat = False

Else

C06623139.fm Page 351 Monday, March 6, 2006 2:07 PM

352 Inside Microsoft SQL Server 2005: T-SQL Querying

Me.sb.Append(",")

Me.sb.Append(s.Value)

End If

End Sub

Public Sub Merge(ByVal Group As VBStrAgg)

Me.sb.Append(Group.sb)

End Sub

Public Function Terminate() As SqlString

Return New SqlString(sb.ToString())

End Function

Public Sub Read(ByVal r As BinaryReader) _

Implements IBinarySerialize.Read

sb = New StringBuilder(r.ReadString())

End Sub

Public Sub Write(ByVal w As BinaryWriter) _

Implements IBinarySerialize.Write

If Me.sb.Length > 4000 Then

w.Write(Me.sb.ToString().Substring(0, 4000))

Else

w.Write(Me.sb.ToString())

End If

End Sub

End Class

<Serializable(), _

StructLayout(LayoutKind.Sequential), _

SqlUserDefinedAggregate(_

Format.Native, _

IsInvariantToOrder:=False, _

IsInvariantToNulls:=True, _

IsInvariantToDuplicates:=True)> _

Public Class VBProdAgg

Private si As SqlInt64

Public Sub Init()

si = 1

End Sub

Public Sub Accumulate(ByVal v As SqlInt64)

If v.IsNull = True Or si.IsNull = True Then

si = SqlInt64.Null

Return

End If

If v = 0 Or si = 0 Then

si = 0

Return

End If

C06623139.fm Page 352 Monday, March 6, 2006 2:07 PM

Chapter 6 Aggregating and Pivoting Data 353

If (Math.Abs(v.Value) <= SqlInt64.MaxValue / Math.Abs(si.Value)) _

Then

si = si * v

Else

si = 0

End If

End Sub

Public Sub Merge(ByVal Group As VBProdAgg)

Accumulate(Group.Terminate())

End Sub

Public Function Terminate() As SqlInt64

If si.IsNull = True Then

Return SqlInt64.Null

Else

Return si

End If

End Function

End Class

Here are the step-by-step instructions you need to follow to create the assemblies in Visual
Studio 2005:

Creating an Assembly in Visual Studio 2005

1. In Visual Studio 2005, create a new C# project. Use the Database folder and the SQL
Server Project template.

Note This template is not available in Visual Studio 2005, Standard edition. If you’re
working with the Standard edition, use the Class Library template and manually write
all the code.

2. In the New Project dialog box, specify the following information:

❑ Name: CSUDAs

❑ Location: C:\

❑ Solution Name: UDAs

When you’re done entering the information, confirm that it is correct.

3. At this point, you’ll be requested to specify a database reference. Create a new database
reference to the tempdb database in the SQL Server instance you’re working with, and
choose it. The database reference you choose tells Visual Studio where to deploy the
UDAs that you develop.

C06623139.fm Page 353 Monday, March 6, 2006 2:07 PM

354 Inside Microsoft SQL Server 2005: T-SQL Querying

4. After confirming the choice of database reference, a question box will pop up asking you
whether you want to enable SQL/CLR debugging on this connection. Choose No. The
sample UDAs you’ll build in this chapter are quite simple, and there won’t be a need for
debugging.

5. In the Solution Explorer window, right-click the CSUDAs project, select the menu items
Add and Aggregate, and then choose the Aggregate template. Rename the class
Aggregate1.cs to CSUDAs_Classes.cs, and confirm.

6. Examine the code of the template. You’ll find that a UDA is implemented as a structure
(struct in C#, Structure in Visual Basic .NET). It can be implemented as a class as well. The
first block of code in the template includes namespaces that are used in the assembly
(lines of code starting with “using”). Add three more statements to include the following
namespaces: System.Text, System.IO, and System.Runtime.InteropServices. (You can copy
those from Listing 6-8.) You are going to use the StringBuilder class from the System.Text
namespace, the BinaryReader and BinaryWriter classes from the System.IO namespace,
and finally the StructLayout attribute from the System.Runtime.InteropServices namespace
(in the second UDA).

7. Rename the default name of the UDA—which is currently the same name as the name of
the class (CSUDAs_Classes)—to CSStrAgg.

8. You’ll find four methods that are already provided by the template. These are the meth-
ods that every UDA must implement. However, if you use the Class Library template for
your project, you have to write them manually. Using the Aggregate template, all you
have to do is fill them with your code. Following is a description of the four methods:

❑ Init: This method is used to initialize the computation. It is invoked once for each
group that the query processor is aggregating.

❑ Accumulate: The name of the method gives you a hint of its purpose—accumulating
the aggregate values, of course. This method is invoked once for each value (that is,
for every single row) in the group that is being aggregated. It uses an input param-
eter, and the parameter has to be of the datatype corresponding to the native SQL
Server datatype of the column you are going to aggregate. The datatype of the input
can also be a CLR UDT.

❑ Merge: You’ll notice that this method uses an input parameter with the type that is
the aggregate class. The method is used to merge multiple partial computations of
an aggregation.

❑ Terminate: This method finishes the aggregation and returns the result.

9. Add two internal (private) variables—sb and firstConcat—to the class just before the Init
method. You can do so by simply copying the code that declares them from Listing 6-8.
The variable sb is of type StringBuilder and will hold the intermediate aggregate value.
The firstConcat variable is of type Boolean and is used to tell whether the input string is

C06623139.fm Page 354 Monday, March 6, 2006 2:07 PM

Chapter 6 Aggregating and Pivoting Data 355

the first you are concatenating in the group. For all input values except the first, you are
going to add a comma in front of the value you are concatenating.

10. Override the current code for the four methods with the code implementing them from
Listing 6-8. Keep in mind the following points for each method:

❑ In the Init method, you initialize sb with an empty string and firstConcat with true.

❑ In the Accumulate method, note that if the value of the parameter is NULL, the
accumulated value will be NULL as well. Also, notice the different treatment of the
first value, which is just appended, and the following values, which are appended
with the addition of a leading comma.

❑ In the Merge method, you are simply adding a partial aggregation to the current
one. You do so by calling the Accumulate method of the current aggregation, and
adding the termination (final value) of the other partial aggregation. The input of
the Merge function refers to the class name, which you revised earlier to CSStrAgg.

❑ The Terminate method is very simple as well; it just returns the string representa-
tion of the aggregated value.

11. Delete the last two rows of the code in the class from the template; these are a place-
holder for a member field. You already defined all member fields you need at the begin-
ning of the UDA.

12. Next, go back to the top of the UDA, right after the inclusion of the namespaces. You’ll
find attribute names that you want to include. Attributes help Visual Studio in deploy-
ment, and they help SQL Server to optimize the usage of the UDA. UDAs have to include
the Serializable attribute. Serialization in .NET means saving the values of the fields of a
class persistently. UDAs need serialization for intermediate results. The format of the
serialization can be native, meaning they are left to SQL Server or defined by the user.
Serialization can be native if you use only .NET value types; it has to be user-defined if
you use .NET reference types. Unfortunately, the string type is a reference type in .NET.
Therefore, you have to prepare your own serialization. You have to implement the IBina-
rySerialize interface, which defines just two methods: Read and Write. The implementa-
tion of these methods in our UDA is very simple. The Read method uses the ReadString
method of the StringBuilder class. The Write method uses the default ToString method.
The ToString method is inherited by all .NET classes from the topmost class, called Sys-
tem.Object.

Continue implementing the UDA by following these steps:

a. Specify that you are going to implement the IBinarySerialize interface in the struc-
ture. You do so by adding a colon and the name of the interface right after the
name of the structure (the UDA name).

b. Copy the Read and Write methods from Listing 6-8 to the end of your UDA.

C06623139.fm Page 355 Monday, March 6, 2006 2:07 PM

356 Inside Microsoft SQL Server 2005: T-SQL Querying

c. Change the Format.Native property of the SqlUserDefinedAggregate attribute to
Format.UserDefined. With user-defined serialization, your aggregate is limited to
8000 bytes only. You have to specify how many bytes your UDA can return at max-
imum with the MaxByteSize property of the SqlUserDefinedAggregate attribute. To
get the maximum possible string length, specify MaxByteSize = 8000.

13. You’ll find some other interesting properties of the SqlUserDefinedAggregate attribute in
Listing 6-8. Let’s explore them:

❑ IsInvariantToDuplicates: This is an optional property. For example, the MAX aggre-
gate is invariant to duplicates, while SUM is not.

❑ IsInvariantToNulls: This is another optional property. It specifies whether the
aggregate is invariant to NULLs.

❑ IsInvariantToOrder: This property is reserved for future use. It is currently ignored
by the query processor. Therefore, order is currently not guaranteed.

❑ IsNullIfEmpty: This property indicates whether the aggregate will return a NULL if
no values have been accumulated.

14. Add the aforementioned properties to your UDA by copying them from Listing 6-8. Your
first UDA is now complete!

15. Listing 6-8 also has the code to implement a product UDA (CSProdAgg). Copy the com-
plete code implementing CSProgAgg to your script. Note that this UDA involves handling
of big integers only. Because the UDA internally deals only with value types, it can use
native serialization. Native serialization requires that the StructLayoutAttribute be speci-
fied as StructLayout.LayoutKindSequential if the UDA is defined in a class and not a struc-
ture. Otherwise, the UDA implements the same four methods as your previous UDA.
There is an additional check in the Accumulate method that prevents out-of-range values.

16. Finally, add the Visual Basic .NET version of both UDAs created so far:

a. From the File menu, choose the menu items Add and New Project to load the Add
New Project dialog box. Navigate through the Visual Basic project type and the
Database folder, and choose SQL Server Project. Don’t confirm yet.

b. In the Add New Project dialog box, specify Name as VBUDAs and Location as C:\.
Then confirm that the information is correct.

c. Use the same database connection you created for the C# project (the connection
to tempdb). The name of the database connection you created earlier should be
instancename.tempdb.dbo.

d. In the Solution Explorer window, right-click the VBUDAs project, select Add, and
choose the Aggregate template. Before confirming, rename the class Aggregate1.vb
to VBUDAs_Classes.vb.

e. Replace all code in VBUDAs_Classes.vb with the Visual Basic .NET code implement-
ing the UDAs from Listing 6-9.

C06623139.fm Page 356 Monday, March 6, 2006 2:07 PM

Chapter 6 Aggregating and Pivoting Data 357

17. Save all files by choosing the File menu item and then Save All.

18. Create the assemblies by building the solution. You do this by choosing the Build menu
item and then Build Solution.

19. Finally, deploy the solution by choosing the Build menu item and then Deploy Solution.

Both assemblies should be cataloged at this point, and all four UDAs should be created. All
these steps are done if you deploy the assembly from Visual Studio .NET.

Note To work with CLR-based functions in SQL Server, you need to enable the server con-
figuration option ‘clr enabled’ (which is disabled by default).

You can check whether the deployment was successful by browsing the sys.assemblies and
sys.assembly_modules catalog views, which are in the tempdb database in our case. To enable
CLR and query these views, run the code in Listing 6-10.

Listing 6-10 Enabling CLR and querying catalog views

EXEC sp_configure 'clr enabled', 1;

RECONFIGURE WITH OVERRIDE;

GO

USE tempdb;

GO

SELECT * FROM sys.assemblies;

SELECT * FROM sys.assembly_modules;

That’s basically it. You use UDAs just like you use any other built-in aggregate function. To test
the new functions, run the following code, and you’ll get the same results returned by the
other solutions to custom aggregates I presented earlier.

Testing UDAs
SELECT groupid, dbo.CSStrAgg(string) AS string

FROM tempdb.dbo.Groups

GROUP BY groupid;

SELECT groupid, dbo.VBStrAgg(string) AS string

FROM tempdb.dbo.Groups

GROUP BY groupid;

SELECT groupid, dbo.CSProdAgg(val) AS product

FROM tempdb.dbo.Groups

GROUP BY groupid;

SELECT groupid, dbo.VBProdAgg(val) AS product

FROM tempdb.dbo.Groups

GROUP BY groupid;

C06623139.fm Page 357 Monday, March 6, 2006 2:07 PM

358 Inside Microsoft SQL Server 2005: T-SQL Querying

When you’re done experimenting with the UDAs, run the following code to disable CLR
support:

EXEC sp_configure 'clr enabled', 0;

RECONFIGURE WITH OVERRIDE;

Specialized Solutions

Another type of solution for custom aggregates is developing a specialized, optimized solution
for each aggregate. The advantage is usually the improved performance of the solution. The
disadvantage is that you probably won’t be able to use similar logic for other aggregate calcu-
lations.

Specialized Solution for Aggregate String Concatenation

A specialized solution for aggregate string concatenation uses the PATH mode of the FOR
XML query option. This beautiful (and extremely fast) technique was devised by Michael Rys,
a program manager with the Microsoft SQL Server development team in charge of SQL Server
XML technologies, and Eugene Kogan, a technical lead on the Microsoft SQL Server Engine
team. The PATH mode provides an easier way to mix elements and attributes than the
EXPLICIT directive. Here’s the specialized solution for aggregate string concatenation:

SELECT groupid,

STUFF((SELECT ',' + string AS [text()]

FROM dbo.Groups AS G2

WHERE G2.groupid = G1.groupid

ORDER BY memberid

FOR XML PATH('')), 1, 1, '') AS string

FROM dbo.Groups AS G1

GROUP BY groupid;

The subquery basically returns an ordered path of all strings within the current group.
Because an empty string is provided to the PATH clause as input, a wrapper element is not
generated. An expression with no alias (for example, ‘,’ + string) or one aliased as [text()] is
inlined, and its contents are inserted as a text node. The purpose of the STUFF function is
simply to remove the first comma (by substituting it with an empty string).

Specialized Solution for Aggregate Product

Keep in mind that to calculate an aggregate product you have to scan all values in the group.
So the performance potential your solution can reach is to achieve the calculation by scanning
the data only once, using a set-based query. In the case of an aggregate product, this can be
achieved using mathematical manipulation based on logarithms. I’ll rely on the following
logarithmic equations:

Equation 1: loga(b) = x if and only if ax = b

Equation 2: loga(v1 * v2 * … * vn) = loga(v1) + loga(v2) + … + loga(vn)

C06623139.fm Page 358 Monday, March 6, 2006 2:07 PM

Chapter 6 Aggregating and Pivoting Data 359

Basically, what you’re going to do here is a transformation of calculations. You have support in
T-SQL for LOG, POWER, and SUM functions. Using those, you can generate the missing
product. Group the data by the groupid column, as you would with any built-in aggregate. The
expression SUM(LOG10(val)) corresponds to the right side of Equation 2, where the base a is
equal to 10 in our case, because you used the LOG10 function. To get the product of the ele-
ments, all you have left to do is raise the base (10) to the power of the right side of the equa-
tion. In other words, the expression POWER(10., SUM(LOG10(val))) gives you the product of
elements within the group. Here’s what the full query looks like:

SELECT groupid, POWER(10., SUM(LOG10(val))) AS product

FROM dbo.Groups

GROUP BY groupid;

This is the final solution if you’re dealing only with positive values. However, the logarithm
function is undefined for zero and negative numbers. You can use pivoting techniques to iden-
tify and deal with zeros and negatives as follows:

SELECT groupid,

CASE

WHEN MAX(CASE WHEN val = 0 THEN 1 END) = 1 THEN 0

ELSE

CASE WHEN COUNT(CASE WHEN val < 0 THEN 1 END) % 2 = 0

THEN 1 ELSE -1

END * POWER(10., SUM(LOG10(NULLIF(ABS(val), 0))))

END AS product

FROM dbo.Groups

GROUP BY groupid;

The outer CASE expression first uses a pivoting technique to check whether a 0 value appears
in the group, in which case it returns a 0 as the result. The ELSE clause invokes another CASE
expression, which also uses a pivoting technique to count the number of negative values in
the group. If that number is even, it produces a +1; if it’s odd, it produces a –1. The purpose of
this calculation is to determine the numerical sign of the result. The sign (–1 or +1) is then
multiplied by the product of the absolute values of the numbers in the group to give the
desired product.

Note that NULLIF is used here to substitute zeros with NULLs. You might expect this part of
the expression not to be evaluated at all if a zero is found. But remember that the optimizer
can consider many different physical plans to execute your query. As a result, you can’t be cer-
tain of the actual order in which parts of an expression will be evaluated. By substituting zeros
with NULLs, you ensure that you’ll never get a domain error if the LOG10 function ends up
being invoked with a zero as an input. This use of NULLIF, together with the use of ABS, allow
this solution to accommodate inputs of any sign (negative, zero, and positive).

C06623139.fm Page 359 Monday, March 6, 2006 2:07 PM

360 Inside Microsoft SQL Server 2005: T-SQL Querying

You could also use a pure mathematical approach to handle zeros and negative values using
the following query:

SELECT groupid,

CAST(ROUND(EXP(SUM(LOG(ABS(NULLIF(val,0)))))*

(1-SUM(1-SIGN(val))%4)*(1-SUM(1-SQUARE(SIGN(val)))),0) AS INT)

AS product

FROM dbo.Groups

GROUP BY groupid;

This example shows that you should never lose hope when searching for an efficient solution.
If you invest the time and think outside the box, in most cases you’ll find a solution.

Specialized Solutions for Aggregate Bitwise Operations

Next, I’ll introduce specialized solutions for aggregating the T-SQL bitwise operations—bitwise
OR (|), bitwise AND (&), and bitwise XOR (^). I’ll assume that you’re familiar with the basics
of bitwise operators and their uses, and provide only a brief overview. If you’re not, please
refer first to the section “Bitwise Operators” in Books Online.

Bitwise operations are operations performed on the individual bits of integer data. Each bit has
two possible values, 1 and 0. Integers can be used to store bitmaps or strings of bits, and in fact
they are used internally by SQL Server to store metadata information—for example, properties of
indexes (clustered, unique, and so on) and properties of databases (read only, restrict access, auto
shrink, and so on). You might also choose to store bitmaps yourself to represent sets of binary
attributes—for example, a set of permissions where each bit represents a different permission.

Some experts advise against using such a design because it violates 1NF (first normal form—
no repeating groups). You might well prefer to design your data in a more normalized form,
where attributes like this are stored in separate columns. I don’t want to get into a debate
about which design is better. Here I’ll assume a given design that does store bitmaps with sets
of flags, and I’ll assume that you need to perform aggregate bitwise activities on these bitmaps.
I just want to introduce the techniques for cases where you do find the need to use them.

Bitwise OR (|) is usually used to construct bitmaps or to generate a result bitmap that accu-
mulates all bits that are turned on. In the result of bitwise OR, bits are turned on (that is, have
value 1) if they are turned on in at least one of the separate bitmaps.

Bitwise AND (&) is usually used to check whether a certain bit (or a set of bits) are turned on
by ANDing the source bitmap and a mask. It’s also used to accumulate only bits that are
turned on in all bitmaps. It generates a result bit that is turned on if that bit is turned on in all
the individual bitmaps.

Bitwise XOR (^) is usually used to calculate parity or as part of a scheme to encrypt data. For each
bit position, the result bit is turned on if it is on in an odd number of the individual bitmaps.

Note Bitwise XOR is the only bitwise operator that is reversible. That’s why it’s used for
parity calculations and encryption.

C06623139.fm Page 360 Monday, March 6, 2006 2:07 PM

Chapter 6 Aggregating and Pivoting Data 361

Aggregate versions of the bitwise operators are not provided in SQL Server, and I’ll provide
solutions here to perform aggregate bitwise operations. I’ll use the same Groups table that I
used in my other custom aggregate examples. Assume that the integer column val represents
a bitmap. To see the bit representation of each integer, first create the function fn_dectobase by
running the code in Listing 6-11.

Listing 6-11 Creation script for the fn_dectobase function

IF OBJECT_ID('dbo.fn_dectobase') IS NOT NULL

DROP FUNCTION dbo.fn_dectobase;

GO

CREATE FUNCTION dbo.fn_dectobase(@val AS BIGINT, @base AS INT)

RETURNS VARCHAR(63)

AS

BEGIN

IF @val < 0 OR @base < 2 OR @base > 36 RETURN NULL;

DECLARE @r AS VARCHAR(63), @alldigits AS VARCHAR(36);

SET @alldigits = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ';

SET @r = '';

WHILE @val > 0

BEGIN

SET @r = SUBSTRING(@alldigits, @val % @base + 1, 1) + @r;

SET @val = @val / @base;

END

RETURN @r;

END

GO

The function accepts two inputs: a 64-bit integer holding the source bitmap, and a base in
which you want to represent the data. Use the following query to return the bit representation
of the integers in the val column of Groups. An abbreviated form of the result (only the 10
rightmost digits of binval) is shown in Table 6-22:

SELECT groupid, val,

RIGHT(REPLICATE('0', 32) + CAST(dbo.fn_dectobase(val, 2) AS VARCHAR(64)),

32) AS binval

FROM dbo.Groups;

Table 6-22 Binary Representation of Values

groupid val binval

a 6 0000000110

a 7 0000000111

b 3 0000000011

b 7 0000000111

b 3 0000000011

C06623139.fm Page 361 Monday, March 6, 2006 2:07 PM

362 Inside Microsoft SQL Server 2005: T-SQL Querying

The binval column shows the val column in base 2 representation, with leading zeros to create
a string with a fixed number of digits. Of course, you can adjust the number of leading zeros
according to your needs. In my code samples, I did not incorporate the invocation of this
function to avoid distracting you from the techniques I want to focus on. But I did invoke it
to generate the bit representations in all the outputs that I’ll show.

Aggregate Bitwise OR With no further ado, let’s start with calculating an aggregate bitwise
OR. To give tangible context to the problem, imagine that you’re maintaining application secu-
rity in the database. The groupid column represents a user, and the val column represents a bit-
map with permission states (either 1 for granted or 0 for not granted) of a role the user is a
member of. You’re after the effective permissions bitmap for each user (group), which should
be calculated as the aggregate bitwise OR between all bitmaps of roles the user is a member of.

The main aspect of a bitwise OR operation that I’ll rely on in my solutions is the fact that it’s
equivalent to the arithmetic sum of the values represented by each distinct bit value that is turned
on in the individual bitmaps. Within an integer, a bit represents the value 2^(bit_pos-1). For
example, the bit value of the third bit is 2^2 = 4. Take for example the bitmaps for user c: 8
(1000), 10 (1010), and 12 (1100). The bitmap 8 has only one bit turned on—the bit value rep-
resenting 8, 10 has the bits representing 8 and 2 turned on, and 12 has the 8 and 4 bits turned
on. The distinct bits turned on in any of the integers 8, 10, and 12 are the 2, 4, and 8 bits, so
the aggregate bitwise OR of 8, 10, and 12 is equal to 2 + 4 + 8 = 14 (1110).

The following solution relies on the aforementioned logic by extracting the individual bit val-
ues that are turned on in any of the participating bitmaps. The extraction is achieved using the
expression MAX(val & <bitval>). The query then performs an arithmetic sum of the individual
bit values:

SELECT groupid,

MAX(val & 1)

+ MAX(val & 2)

+ MAX(val & 4)

+ MAX(val & 8)

-- ...

+ MAX(val & 1073741824) AS agg_or

FROM dbo.Groups

GROUP BY groupid;

b 11 0000001011

c 8 0000001000

c 10 0000001010

c 12 0000001100

Table 6-22 Binary Representation of Values

groupid val binval

C06623139.fm Page 362 Monday, March 6, 2006 2:07 PM

Chapter 6 Aggregating and Pivoting Data 363

The result of the aggregate bitwise OR operation is shown in Table 6-23, including the 10
rightmost digits of the binary representation of the result value.

Similarly, you can use SUM(DISTINCT val & <bitval>) instead of MAX(val & <bitval>), because
the only possible results are <bitval> and 0:

SELECT groupid,

SUM(DISTINCT val & 1)

+ SUM(DISTINCT val & 2)

+ SUM(DISTINCT val & 4)

+ SUM(DISTINCT val & 8)

-- ...

+ SUM(DISTINCT val & 1073741824) AS agg_or

FROM dbo.Groups

GROUP BY groupid;

Both solutions suffer from the same limitation—lengthy query strings—because of the need for
a different expression for each bit value. In an effort to shorten the query strings, you can use
an auxiliary table. You join the Groups table with an auxiliary table that contains all relevant
bit values, using val & bitval = bitval as the join condition. The result of the join will include all
bit values that are turned on in any of the bitmaps. You can then find SUM(DISTINCT
<bitval>) for each group. The auxiliary table of bit values can be easily generated from the
Nums table used earlier. Filter as many numbers as the bits that you might need, and raise 2
to the power n–1. Here’s the complete solution:

SELECT groupid, SUM(DISTINCT bitval) AS agg_or

FROM dbo.Groups

JOIN (SELECT POWER(2, n-1) AS bitval

FROM dbo.Nums

WHERE n <= 31) AS Bits

ON val & bitval = bitval

GROUP BY groupid;

Aggregate Bitwise AND In a similar manner, you can calculate an aggregate bitwise AND. In
the permissions scenario, an aggregate bitwise AND would represent the most restrictive permis-
sion set. Just keep in mind that a bit value should be added to the arithmetic sum only if it’s turned
on in all bitmaps. So first group the data by groupid and bitval, and filter only the groups where
MIN(val & bitval) > 0, meaning that the bit value was turned on in all bitmaps. In an outer query,
group the data by groupid and perform the arithmetic sum of the bit values from the inner query:

Table 6-23 Aggregate Bitwise OR

groupid agg_or agg_or_binval

a 7 0000000111

b 15 0000001111

c 14 0000001110

C06623139.fm Page 363 Monday, March 6, 2006 2:07 PM

364 Inside Microsoft SQL Server 2005: T-SQL Querying

SELECT groupid, SUM(bitval) AS agg_and

FROM (SELECT groupid, bitval

FROM dbo.Groups,

(SELECT POWER(2, n-1) AS bitval

FROM dbo.Nums

WHERE n <= 31) AS Bits

GROUP BY groupid, bitval

HAVING MIN(val & bitval) > 0) AS D

GROUP BY groupid;

The result of the aggregate bitwise AND operation is shown in Table 6-24.

Aggregate Bitwise XOR To calculate an aggregate bitwise XOR operation, filter only the
groupid, bitval groups that have an odd number of bits that are turned on as shown in the fol-
lowing code, which illustrates an aggregate bitwise XOR using Nums and generates the output
shown in Table 6-25:

SELECT groupid, SUM(bitval) AS agg_xor

FROM (SELECT groupid, bitval

FROM dbo.Groups,

(SELECT POWER(2, n-1) AS bitval

FROM dbo.Nums

WHERE n <= 31) AS Bits

GROUP BY groupid, bitval

HAVING SUM(SIGN(val & bitval)) % 2 = 1) AS D

GROUP BY groupid;

Median

As the last example for a specialized custom aggregate solution, I’ll use the statistical median
calculation. Suppose that you need to calculate the median of the val column for each group.
There are two different definitions of median. Here we will return the middle value in case
there’s an odd number of elements, and the average of the two middle values in case there’s an
even number of elements.

Table 6-24 Aggregate Bitwise AND

groupid agg_or agg_or_binval

a 6 0000000110

b 3 0000000011

c 8 0000001000

Table 6-25 Aggregate Bitwise XOR

groupid agg_or agg_or_binval

a 1 0000000001

b 12 0000001100

c 14 0000001110

C06623139.fm Page 364 Monday, March 6, 2006 2:07 PM

Chapter 6 Aggregating and Pivoting Data 365

The following code shows a technique for calculating the median, producing the output
shown in Table 6-26:

WITH Tiles AS

(

SELECT groupid, val,

NTILE(2) OVER(PARTITION BY groupid ORDER BY val) AS tile

FROM dbo.Groups

),

GroupedTiles AS

(

SELECT groupid, tile, COUNT(*) AS cnt,

CASE WHEN tile = 1 THEN MAX(val) ELSE MIN(val) END AS val

FROM Tiles

GROUP BY groupid, tile

)

SELECT groupid,

CASE WHEN MIN(cnt) = MAX(cnt) THEN AVG(1.*val)

ELSE MIN(val) END AS median

FROM GroupedTiles

GROUP BY groupid;

The Tiles CTE calculates the NTILE(2) value within the group, based on val order. When
there’s an even number of elements, the first half of the values will get tile number 1 and the
second half will get tile number 2. In an even case, the median is supposed to be the average
of the highest value within the first tile and the lowest in the second. When there’s an odd
number of elements, remember that an additional row is added to the first group. This means
that the highest value in the first tile is the median.

The second CTE (GroupedTiles) groups the data by group and tile number, returning the row
count for each group and tile as well as the val column, which for the first tile is the maximum
value within the tile and for the second tile the minimum value within the tile.

The outer query groups the two rows in each group (one representing each tile). A CASE
expression in the SELECT list determines what to return based on the parity of the group’s
row count. When the group has an even number of rows (that is, the group’s two tiles have the
same row count), you get the average of the maximum in the first tile and the minimum in the
second. When the group has an odd number of elements (that is, the group’s two tiles have
different row counts), you get the minimum of the two values, which happens to be the max-
imum within the first tile, which in turn, happens to be the median.

Table 6-26 Median

groupid median

a 6.500000

b 5.000000

c 10.000000

C06623139.fm Page 365 Monday, March 6, 2006 2:07 PM

366 Inside Microsoft SQL Server 2005: T-SQL Querying

Using the ROW_NUMBER function, you can come up with additional solutions to finding the
median that are more elegant and somewhat simpler. Here’s the first example:

WITH RN AS

(

SELECT groupid, val,

ROW_NUMBER()

OVER(PARTITION BY groupid ORDER BY val, memberid) AS rna,

ROW_NUMBER()

OVER(PARTITION BY groupid ORDER BY val DESC, memberid DESC) AS rnd

FROM dbo.Groups

)

SELECT groupid, AVG(1.*val) AS median

FROM RN

WHERE ABS(rna - rnd) <= 1

GROUP BY groupid;

The idea is to calculate two row numbers for each row: one based on val, memberid (the tie-
breaker) in ascending order (rna), and the other based on the same attributes in descending
order (rnd). There’s an interesting mathematical relationship between two sequences sorted
in opposite directions that you can use to your advantage. The absolute difference between the
two is smaller than or equal to 1 only for the elements that need to participate in the median
calculation. Take, for example, a group with an odd number of elements; ABS(rna – rnd) is
equal to 0 only for the middle row. For all other rows, it is greater than 1. Given an even num-
ber of elements, the difference is 1 for the two middle rows and greater than 1 for all others.

The reason for using memberid as a tiebreaker is to guarantee determinism of the row number
calculations. Because you’re calculating two different row numbers, you want to make sure
that a value that appears at the nth position from the beginning in ascending order will appear
at the nth position from the end in descending order.

Once the values that need to participate in the median calculation are isolated, you just need
to group them by groupid and calculate the average per group.

You can avoid the need to calculate two separate row numbers by deriving the second from
the first. The descending row numbers can be calculated by subtracting the ascending row
numbers from the count of rows in the group and adding one. For example, in a group of four
elements, the row that got an ascending row number 1, would get the descending row number
4–1+1 = 4. Ascending row number 2, would get the descending row number 4–2+1 = 3, and so
on. Deriving the descending row number from the ascending one eliminates the need for a tie-
breaker. You’re not dealing with two separate calculations; therefore, nondeterminism is not
an issue anymore.

C06623139.fm Page 366 Monday, March 6, 2006 2:07 PM

Chapter 6 Aggregating and Pivoting Data 367

So the calculation rna – rnd becomes the following: rn – (cnt-rn+1) = 2*rn – cnt – 1. Here’s a
query that implements this logic:

WITH RN AS

(

SELECT groupid, val,

ROW_NUMBER() OVER(PARTITION BY groupid ORDER BY val) AS rn,

COUNT(*) OVER(PARTITION BY groupid) AS cnt

FROM dbo.Groups

)

SELECT groupid, AVG(1.*val) AS median

FROM RN

WHERE ABS(2*rn - cnt - 1) <= 1

GROUP BY groupid;

There’s another way to figure out which rows participate in the median calculation based on
the row number and the count of rows in the group: rn IN((cnt+1)/2, (cnt+2)/2). For an odd
number of elements, both expressions yield the middle row number. For example, if you have
7 rows, both (7+1)/2 and (7+2)/2 equal 4. For an even number of elements, the first expres-
sion yields the row number just before the middle point and the second yields the row
number just after it. If you have 8 rows, (8+1)/2 yields 4 and (8+2)/2 yields 5. Here’s the
query that implements this logic:

WITH RN AS

(

SELECT groupid, val,

ROW_NUMBER() OVER(PARTITION BY groupid ORDER BY val) AS rn,

COUNT(*) OVER(PARTITION BY groupid) AS cnt

FROM dbo.Groups

)

SELECT groupid, AVG(1.*val) AS median

FROM RN

WHERE rn IN((cnt+1)/2, (cnt+2)/2)

GROUP BY groupid;

Histograms
Histograms are powerful analytical tools that express the distribution of items. For example,
suppose you need to figure out from the order information in the Orders table how many
small, medium, and large orders you have, based on the order quantities. In other words, you
need a histogram with three steps. What defines quantities as small, medium, or large are the
extreme quantities (the minimum and maximum quantities). In our Orders table, the mini-
mum order quantity is 10 and the maximum is 40. Take the difference between the two
extremes (40 – 10 = 30), and divide it by the number of steps (3) to get the step size. In our
case, it’s 30 divided by 3 is 10. So the boundaries of step 1 (small) would be 10 and 20; for
step 2 (medium), they would be 20 and 30; and for step 3 (large), they would be 30 and 40.

To generalize this, let mn = MIN(qty) and mx = MAX(qty), and let stepsize = (mx – mn) / @num-
steps. Given a step number n, the lower bound of the step (lb) is mn + (n – 1) * stepsize and the

C06623139.fm Page 367 Monday, March 6, 2006 2:07 PM

368 Inside Microsoft SQL Server 2005: T-SQL Querying

higher bound (hb) is mn + n * stepsize. There’s a tricky bit here. What predicate will you use to
bracket the elements that belong in a specific step? You can’t use qty BETWEEN lb and hb
because a value that is equal to hb will appear in this step, and also in the next step, where it
will equal the lower bound. Remember that the same calculation yielded the higher bound of
one step and the lower bound of the next step. One approach to deal with this problem is to
increase each of the lower bounds by one, so they exceed the previous step’s higher bounds.
With integers that’s fine, but with another data type it won’t work because there will be poten-
tial values in between two steps, but not inside either one—between the cracks, so to speak.

What I like to do to solve the problem is keep the same value in both bounds, and instead of
using BETWEEN I use qty >= lb and qty < hb. This technique has its own issues, but I find
it easier to deal with than the previous technique. The issue here is that the item with the
highest quantity (40, in our case) is left out of the histogram. To solve this, I add a very
small number to the maximum value before calculating the step size: stepsize = ((1E0*mx +
0.0000000001) – mn) / @numsteps. This is a technique that allows the item with the highest
value to be included, and the effect on the histogram will otherwise be negligible. I multiplied
mx by the float value 1E0 to protect against the loss of the upper data point when qty is typed
as MONEY or SMALLMONEY.

So the ingredients you need to generate the lower and higher bounds of the histogram’s steps
are these: @numsteps (given as input), step number (the n column from the Nums auxiliary
table), mn, and stepsize, which I described earlier.

Here’s the T-SQL code required to produce the step number, lower bound, and higher bound
for each step of the histogram, generating the output shown in Table 6-27:

DECLARE @numsteps AS INT;

SET @numsteps = 3;

SELECT n AS step,

mn + (n - 1) * stepsize AS lb,

mn + n * stepsize AS hb

FROM dbo.Nums,

(SELECT MIN(qty) AS mn,

((1E0*MAX(qty) + 0.0000000001) - MIN(qty))

/ @numsteps AS stepsize

FROM dbo.Orders) AS D

WHERE n <= @numsteps;

Table 6-27 Histogram Steps Table

Step lb hb

1 10 20.0000000000333

2 20.0000000000333 30.0000000000667

3 30.0000000000667 40.0000000001

C06623139.fm Page 368 Monday, March 6, 2006 2:07 PM

Chapter 6 Aggregating and Pivoting Data 369

You might want to encapsulate this code in a user-defined function to simplify the queries that
return the actual histograms. Run the code in Listing 6-12 to do just that.

Listing 6-12 Creation script for fn_histsteps function

CREATE FUNCTION dbo.fn_histsteps(@numsteps AS INT) RETURNS TABLE

AS

RETURN

SELECT n AS step,

mn + (n - 1) * stepsize AS lb,

mn + n * stepsize AS hb

FROM dbo.Nums,

(SELECT MIN(qty) AS mn,

((1E0*MAX(qty) + 0.0000000001) - MIN(qty))

/ @numsteps AS stepsize

FROM dbo.Orders) AS D

WHERE n <= @numsteps;

GO

To test the function, run the following query, which will give you a three-row histogram steps
table:

SELECT * FROM dbo.fn_histsteps(3) AS S;

To return the actual histogram, simply join the steps table and the Orders table on the predi-
cate I described earlier (qty >= lb AND qty < hb), group the data by step number, and return the
step number and row count:

SELECT step, COUNT(*) AS numorders

FROM dbo.fn_histsteps(3) AS S

JOIN dbo.Orders AS O

ON qty >= lb AND qty < hb

GROUP BY step;

This query generates the histogram shown in Table 6-28.

You can see that there are eight small orders, two medium orders, and one large order. To
return a histogram with ten steps, simply provide 10 as the input to the fn_histsteps function,
and the query will yield the histogram shown in Table 6-29:

SELECT step, COUNT(*) AS numorders

FROM dbo.fn_histsteps(10) AS S

JOIN dbo.Orders AS O

ON qty >= lb AND qty < hb

GROUP BY step;

Table 6-28 Histogram with Three Steps

step numorders

1 8

2 2

3 1

C06623139.fm Page 369 Monday, March 6, 2006 2:07 PM

370 Inside Microsoft SQL Server 2005: T-SQL Querying

Note that because you’re using an inner join, empty steps are not returned. To return empty
steps also, you can use the following outer join query, which generates the output shown in
Table 6-30:

SELECT step, COUNT(qty) AS numorders

FROM dbo.fn_histsteps(10) AS S

LEFT OUTER JOIN dbo.Orders AS O

ON qty >= lb AND qty < hb

GROUP BY step;

Note Notice that COUNT(qty) is used here and not COUNT(*). COUNT(*) would incorrectly
return 1 for empty steps because there’s an outer row in the group. You have to provide the
COUNT function an attribute from the nonpreserved side (Orders) to get the correct count.

Instead of using an outer join query, you can use a cross join, with a filter that matches orders
to steps, and the GROUP BY ALL option which insures that also empty steps will also be
returned:

SELECT step, COUNT(qty) AS numcusts

FROM dbo.fn_histsteps(10) AS S, dbo.Orders AS O

WHERE qty >= lb AND qty < hb

GROUP BY ALL step;

Table 6-29 Histogram with Ten Steps

step numorders

1 4

2 2

4 3

7 1

10 1

Table 6-30 Histogram with Ten Steps, Including Empty Steps

step numorders

1 4

2 2

3 0

4 3

5 0

6 0

7 1

8 0

9 0

10 1

C06623139.fm Page 370 Monday, March 6, 2006 2:07 PM

Chapter 6 Aggregating and Pivoting Data 371

I just wanted to show that you can write a simpler solution using the GROUP BY ALL option.
But remember that it is advisable to refrain from using this non standard legacy feature, as it
will probably be removed from the product in some future version.

There’s another alternative to taking care of the issue with the step boundaries and the pred-
icate used to identify a match. You can simply check whether the step number is 1, in which
case you subtract 1 from the lower bound. Then, in the query generating the actual histogram,
you use the predicate qty > lb AND qty <= hb.

Another approach is to check whether the step is the last, and if it is, add 1 to the higher
bound. Then use the predicate qty >= lb AND qty < hb.

Listing 6-13 has the revised function implementing the latter approach:

Listing 6-13 Altering the implementation of the fn_histsteps function

ALTER FUNCTION dbo.fn_histsteps(@numsteps AS INT) RETURNS TABLE

AS

RETURN

SELECT n AS step,

mn + (n - 1) * stepsize AS lb,

mn + n * stepsize + CASE WHEN n = @numsteps THEN 1 ELSE 0 END AS hb

FROM dbo.Nums,

(SELECT MIN(qty) AS mn,

(1E0*MAX(qty) - MIN(qty)) / @numsteps AS stepsize

FROM dbo.Orders) AS D

WHERE n < = @numsteps;

GO

And the following query generates the actual histogram:

SELECT step, COUNT(qty) AS numorders

FROM dbo.fn_histsteps(10) AS S

LEFT OUTER JOIN dbo.Orders AS O

ON qty >= lb AND qty < hb

GROUP BY step;

Grouping Factor
In earlier chapters, in particular in Chapter 4, I described a concept called a grouping factor. In
particular, I used it in a problem to isolate islands, or ranges of consecutive elements in a
sequence. Recall that the grouping factor is the factor you end up using in your GROUP BY
clause to identify the group. In the earlier problem, I demonstrated two techniques to calcu-
late the grouping factor. One method was calculating the maximum value within the group
(specifically, the smallest value that is both greater than or equal to the current value and fol-
lowed by a gap). The other method used row numbers.

C06623139.fm Page 371 Monday, March 6, 2006 2:07 PM

372 Inside Microsoft SQL Server 2005: T-SQL Querying

Because this chapter covers aggregates, it is appropriate to revisit this very practical problem.
In my examples here, I’ll use the Stocks table, which you create and populate by running the
code in Listing 6-14.

Listing 6-14 Creating and populating the Stocks table

USE tempdb;

GO

IF OBJECT_ID('Stocks') IS NOT NULL

DROP TABLE Stocks;

GO

CREATE TABLE dbo.Stocks

(

dt DATETIME NOT NULL PRIMARY KEY,

price INT NOT NULL

);

INSERT INTO dbo.Stocks(dt, price) VALUES('20060801', 13);

INSERT INTO dbo.Stocks(dt, price) VALUES('20060802', 14);

INSERT INTO dbo.Stocks(dt, price) VALUES('20060803', 17);

INSERT INTO dbo.Stocks(dt, price) VALUES('20060804', 40);

INSERT INTO dbo.Stocks(dt, price) VALUES('20060805', 40);

INSERT INTO dbo.Stocks(dt, price) VALUES('20060806', 52);

INSERT INTO dbo.Stocks(dt, price) VALUES('20060807', 56);

INSERT INTO dbo.Stocks(dt, price) VALUES('20060808', 60);

INSERT INTO dbo.Stocks(dt, price) VALUES('20060809', 70);

INSERT INTO dbo.Stocks(dt, price) VALUES('20060810', 30);

INSERT INTO dbo.Stocks(dt, price) VALUES('20060811', 29);

INSERT INTO dbo.Stocks(dt, price) VALUES('20060812', 29);

INSERT INTO dbo.Stocks(dt, price) VALUES('20060813', 40);

INSERT INTO dbo.Stocks(dt, price) VALUES('20060814', 45);

INSERT INTO dbo.Stocks(dt, price) VALUES('20060815', 60);

INSERT INTO dbo.Stocks(dt, price) VALUES('20060816', 60);

INSERT INTO dbo.Stocks(dt, price) VALUES('20060817', 55);

INSERT INTO dbo.Stocks(dt, price) VALUES('20060818', 60);

INSERT INTO dbo.Stocks(dt, price) VALUES('20060819', 60);

INSERT INTO dbo.Stocks(dt, price) VALUES('20060820', 15);

INSERT INTO dbo.Stocks(dt, price) VALUES('20060821', 20);

INSERT INTO dbo.Stocks(dt, price) VALUES('20060822', 30);

INSERT INTO dbo.Stocks(dt, price) VALUES('20060823', 40);

INSERT INTO dbo.Stocks(dt, price) VALUES('20060824', 20);

INSERT INTO dbo.Stocks(dt, price) VALUES('20060825', 60);

INSERT INTO dbo.Stocks(dt, price) VALUES('20060826', 60);

INSERT INTO dbo.Stocks(dt, price) VALUES('20060827', 70);

INSERT INTO dbo.Stocks(dt, price) VALUES('20060828', 70);

INSERT INTO dbo.Stocks(dt, price) VALUES('20060829', 40);

INSERT INTO dbo.Stocks(dt, price) VALUES('20060830', 30);

INSERT INTO dbo.Stocks(dt, price) VALUES('20060831', 10);

CREATE UNIQUE INDEX idx_price_dt ON Stocks(price, dt);

C06623139.fm Page 372 Monday, March 6, 2006 2:07 PM

Chapter 6 Aggregating and Pivoting Data 373

The Stocks table contains daily stock prices.

Note Stock prices are rarely restricted to integers, and there is usually more than one
stock, but I’ll use integers and a single stock for simplification purposes. Also, stock markets
usually don’t have activity on Saturdays; because I want to demonstrate a technique over a
sequence with no gaps, I introduced rows for Saturdays as well, with the same value that was
stored in the preceding Friday.

The request is to isolate consecutive periods where the stock price was greater than or equal
to 50. Figure 6-2 has a graphical depiction of the stock prices over time, and the arrows repre-
sent the periods you’re supposed to return.

Figure 6-2 Periods in which stock values were greater than or equal to 50

For each such period, you need to return the starting date, ending date, duration in days, and
the peak (maximum) price.

Let’s start with a solution that does not use row numbers. The first step here is to filter only
the rows where the price is greater than or equal to 50. Unlike the traditional problem where
you really have gaps in the data, here the gaps appear only after filtering. The whole sequence
still appears in the Stocks table. You can use this fact to your advantage. Of course, you could
take the long route of calculating the maximum date within the group (the first date that is
both later than or equal to the current date and followed by a gap). However, a much simpler
and faster technique to calculate the grouping factor would be to return the first date that is
greater than the current, on which the stock’s price is less than 50. Here, you still get the same
grouping factor for all elements of the same target group, yet you need only one nesting level
of subqueries instead of two.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2021 22 23 24 25 26 27 28 29 30 31

Date

Va
lu

e

Stock Values

80

70

60

50

40

30

20

10

0

C06623139.fm Page 373 Monday, March 6, 2006 2:07 PM

374 Inside Microsoft SQL Server 2005: T-SQL Querying

Here’s the query that generates the desired result shown in Table 6-31:

SELECT MIN(dt) AS startrange, MAX(dt) AS endrange,

DATEDIFF(day, MIN(dt), MAX(dt)) + 1 AS numdays,

MAX(price) AS maxprice

FROM (SELECT dt, price,

(SELECT MIN(dt)

FROM dbo.Stocks AS S2

WHERE S2.dt > S1.dt

AND price < 50) AS grp

FROM dbo.Stocks AS S1

WHERE price >= 50) AS D

GROUP BY grp;

Of course, in SQL Server 2005 you can use the ROW_NUMBER function as I described in
Chapter 4:

SELECT MIN(dt) AS startrange, MAX(dt) AS endrange,

DATEDIFF(day, MIN(dt), MAX(dt)) + 1 AS numdays,

MAX(price) AS maxprice

FROM (SELECT dt, price,

dt - ROW_NUMBER() OVER(ORDER BY dt) AS grp

FROM dbo.Stocks AS S1

WHERE price >= 50) AS D

GROUP BY grp;

CUBE and ROLLUP
CUBE and ROLLUP are options available to queries that contain a GROUP BY clause. They
are useful for applications that need to provide a changing variety of data aggregations based
on varying sets of attributes or dimensions. (In the context of cubes, the word dimension is
often used, either as a synonym for attribute or to describe a domain of values for an attribute.)
I’ll first describe the CUBE option, and then follow with a description of the ROLLUP option,
which is a special case of CUBE.

CUBE

Imagine that your application needs to provide the users with the ability to request custom
aggregates based on various sets of dimensions. Say, for example, that your base data is the
Orders table that I used earlier in the chapter, and that the users need to analyze the data

Table 6-31 Ranges Where Stock Values Were >= 50

startrange endrange numdays maxprice

2006-08-06 00:00:00.000 2006-08-10 00:00:00.000 4 70

2006-08-15 00:00:00.000 2006-08-20 00:00:00.000 5 60

2006-08-25 00:00:00.000 2006-08-29 00:00:00.000 4 70

C06623139.fm Page 374 Monday, March 6, 2006 2:07 PM

Chapter 6 Aggregating and Pivoting Data 375

based on three dimensions: employee, customer, and order year. If you group the data by all
three dimensions, you’ve covered only one of the possibilities the users might be interested in.
However, the users might request any set of dimensions (for example, employee alone, cus-
tomer alone, order year alone, employee and customer, and so on). For each request, you
would need to construct a different GROUP BY query and submit it to SQL Server, returning
the result set to the client. That’s a lot of roundtrips and a lot of network traffic.

As the number of dimensions grows, the number of possible GROUP BY queries increases
dramatically. For n dimensions, there are 2n different queries. With 3 dimensions, you’re look-
ing at 8 possible requests; with 4 dimensions, there are 16. With 10 dimensions (the maxi-
mum number of grouping expressions we will be able to use with CUBE), users could request
any one of 1024 different GROUP BY queries.

Simply put, adding the option WITH CUBE to a query with all dimensions specified in
the GROUP BY clause generates one unified result set out of the result sets of all the different
GROUP BY queries over subsets of the dimensions. If you think about it, Analysis Services
cubes give you similar functionality, but on a much larger scale and with substantially more
sophisticated options. However, when you don’t need to support dynamic analysis on such
a scale and at such a level of sophistication, the option WITH CUBE allows you to achieve this
within the relational database.

Because each set of dimensions generates a result set with a different subset of all possible
result columns, the designers who implemented CUBE and ROLLUP had to come up with a
placeholder for the values in the unneeded columns. The designers chose NULL. So, for
example, all rows from the result set of a GROUP BY empid, custid would have NULL in the
orderyear result column. This allows all result sets to be unified into one result set with one
schema.

As an example, the following CUBE query returns all possible aggregations (total quantities)
of orders based on the dimensions empid, custid, and orderyear, generating the output shown
in Table 6-32:

SELECT empid, custid,

YEAR(orderdate) AS orderyear, SUM(qty) AS totalqty

FROM dbo.Orders

GROUP BY empid, custid, YEAR(orderdate)

WITH CUBE;

Table 6-32 Cube’s Result

empid custid orderyear totalqty

1 A 2002 12

1 A NULL 12

1 B 2002 20

1 B NULL 20

C06623139.fm Page 375 Monday, March 6, 2006 2:07 PM

376 Inside Microsoft SQL Server 2005: T-SQL Querying

1 C 2003 14

1 C NULL 14

1 NULL NULL 46

2 B 2003 12

2 B NULL 12

2 C 2004 20

2 C NULL 20

2 NULL NULL 32

3 A 2002 10

3 A NULL 10

3 B 2004 15

3 B NULL 15

3 C 2002 22

3 C NULL 22

3 D 2002 30

3 D NULL 30

3 NULL NULL 77

4 A 2003 40

4 A 2004 10

4 A NULL 50

4 NULL NULL 50

NULL NULL NULL 205

NULL A 2002 22

NULL A 2003 40

NULL A 2004 10

NULL A NULL 72

NULL B 2002 20

NULL B 2003 12

NULL B 2004 15

NULL B NULL 47

NULL C 2002 22

NULL C 2003 14

NULL C 2004 20

NULL C NULL 56

NULL D 2002 30

NULL D NULL 30

Table 6-32 Cube’s Result

empid custid orderyear totalqty

C06623139.fm Page 376 Monday, March 6, 2006 2:07 PM

Chapter 6 Aggregating and Pivoting Data 377

As long as the dimension columns in the table don’t have NULLs, wherever you see a NULL
in the result of the CUBE query, it logically means all. Later I’ll discuss how to deal with
NULLs in the queried table. For example, the row containing NULL, NULL, 2004, 45 shows
the total quantity (45) for the orders of all employees and all customers for the order year
2004. You might want to cache the result set from a CUBE query in the client or middle tier,
or you might want to save it in a temporary table and index it. The code in Listing 6-15 selects
the result set into the temporary table #Cube and then creates a clustered index on all
dimensions.

Listing 6-15 Populating a #Cube with CUBE query's result set

SELECT empid, custid,

YEAR(orderdate) AS orderyear, SUM(qty) AS totalqty

INTO #Cube

FROM dbo.Orders

GROUP BY empid, custid, YEAR(orderdate)

WITH CUBE;

CREATE CLUSTERED INDEX idx_emp_cust_year

ON #Cube(empid, custid, orderyear);

Any request for an aggregate can be satisfied using a seek operation within the clustered
index. For example, the following query returns the total quantity for employee 1, generating
the execution plan shown in Figure 6-3:

SELECT totalqty

FROM #Cube

WHERE empid = 1

AND custid IS NULL

AND orderyear IS NULL;

1 NULL 2002 32

3 NULL 2002 62

NULL NULL 2002 94

1 NULL 2003 14

2 NULL 2003 12

4 NULL 2003 40

NULL NULL 2003 66

2 NULL 2004 20

3 NULL 2004 15

4 NULL 2004 10

NULL NULL 2004 45

Table 6-32 Cube’s Result

empid custid orderyear totalqty

C06623139.fm Page 377 Monday, March 6, 2006 2:07 PM

378 Inside Microsoft SQL Server 2005: T-SQL Querying

Figure 6-3 Execution plan for a query against the #Cube table

Once you’re done querying the #Cube table, drop it:

DROP TABLE #Cube;

An issue might arise if dimension columns allow NULLs. For example, run the following code
to allow NULLs in the empid column and introduce some actual NULL values:

ALTER TABLE dbo.Orders ALTER COLUMN empid INT NULL;

UPDATE dbo.Orders SET empid = NULL WHERE orderid IN(10001, 20001);

You should realize that when you run a CUBE query now, a NULL in the empid column is
ambiguous. When it results from NULL in the empid column, it represents the group of
unknown employees. When it is generated by the CUBE option, it represents all employees.
However, without any specific treatment of the NULLs, you won’t be able to tell which it is.
I like to simply substitute for NULL a value that I know can’t be used in the data—for
example, –1 as the empid. I use the COALESCE or ISNULL function for this purpose. After
this substitution, the value –1 would represent unknown employees, and NULL can only
mean all employees. Here’s a query that incorporates this logic:

SELECT COALESCE(empid, -1) AS empid, custid,

YEAR(orderdate) AS orderyear, SUM(qty) AS totalqty

FROM dbo.Orders

GROUP BY COALESCE(empid, -1), custid, YEAR(orderdate)

WITH CUBE;

Another option is to use the T-SQL function GROUPING, which was designed to address the
ambiguity of NULL in the result set. You supply the function with the dimension column
name as input. The value of GROUPING(<dimension>) indicates whether or not the value of
<dimension> in the row represents the value for a group (in this case, GROUPING returns 0)
or is a placeholder that represents all values (in this case, GROUPING returns 1). Specifically
for the dimension value NULL, GROUPING returns 1 if the NULL is a result of the CUBE
option (meaning all) and 0 if it represents the group of source NULLs. Here’s a query that
uses the function GROUPING:

SELECT empid, GROUPING(empid) AS grp_empid, custid,

YEAR(orderdate) AS orderyear, SUM(qty) AS totalqty

FROM dbo.Orders

GROUP BY empid, custid, YEAR(orderdate)

WITH CUBE;

C06623139.fm Page 378 Monday, March 6, 2006 2:07 PM

Chapter 6 Aggregating and Pivoting Data 379

If you’re spooling the result set of a CUBE query to a temporary table, don’t forget to include the
grouping columns in the index, and also be sure to include them in your filters. For example,
assume you spooled the result set of the preceding query to a temporary table called #Cube.
The following query would return the total quantity for customer A:

SELECT totalqty

FROM #Cube

WHERE empid IS NULL AND grp_empid = 1

AND custid = 'A'

AND orderyear IS NULL;

ROLLUP

ROLLUP is a special case of CUBE that you can use when there’s a hierarchy on the dimen-
sions. For example, suppose you want to analyze order quantities based on the dimensions
order year, order month, and order day. Assume you don’t really care about totals of an item
in one level of granularity across all values in a higher level of granularity—for example, the
totals of the third day in all months and all years. You care only about the totals of an item
in one level of granularity for all lower level values—for example, the total for year 2004, all
months, all days. ROLLUP gives you just that. It eliminates all “noninteresting” aggregations
in a hierarchical case. More accurately, it doesn’t even bother to calculate them at all, so you
should expect better performance from a ROLLUP query than a CUBE query based on the
same dimensions.

As an example for using ROLLUP, the following query returns the total order quantities for
the dimensions order year, order month, and order day, and it returns the output shown in
Table 6-33:

SELECT

YEAR(orderdate) AS orderyear,

MONTH(orderdate) AS ordermonth,

DAY(orderdate) AS orderday,

SUM(qty) AS totalqty

FROM dbo.Orders

GROUP BY YEAR(orderdate), MONTH(orderdate), DAY(orderdate)

WITH ROLLUP;

Table 6-33 Rollup’s Result

orderyear ordermonth orderday totalqty

2002 4 18 22

2002 4 NULL 22

2002 8 2 10

2002 8 NULL 10

2002 9 7 30

2002 9 NULL 30

C06623139.fm Page 379 Monday, March 6, 2006 2:07 PM

380 Inside Microsoft SQL Server 2005: T-SQL Querying

Conclusion
This chapter covered various solutions to data-aggregation problems that reused key query-
ing techniques I introduced earlier in the book. It also introduced new techniques, such as
dealing with tiebreakers by using concatenation, calculating a minimum using the MAX
function, pivoting, unpivoting, calculating custom aggregates by using specialized tech-
niques, and others.

As you probably noticed, data-aggregation techniques involve a lot of logical manipulation.
If you’re looking for ways to improve your logic, you can practice pure logical puzzles, as they
have a lot in common with querying problems in terms of the thought processes involved.
You can find pure logic puzzles in Appendix A.

2002 12 24 32

2002 12 NULL 32

2002 NULL NULL 94

2003 1 9 40

2003 1 18 14

2003 1 NULL 54

2003 2 12 12

2003 2 NULL 12

2003 NULL NULL 66

2004 2 12 10

2004 2 16 20

2004 2 NULL 30

2004 4 18 15

2004 4 NULL 15

2004 NULL NULL 45

NULL NULL NULL 205

Table 6-33 Rollup’s Result

orderyear ordermonth orderday totalqty

C06623139.fm Page 380 Monday, March 6, 2006 2:07 PM

	Cover
	Table of Contents
	Chapter 1: Logical Query Processing
	Logical Query Processing Phases
	Brief Description of Logical Query Processing Phases

	Sample Query Based on Customers/Orders Scenario
	Logical Query Processing Phase Details
	Step 1: Performing a Cartesian Product (Cross Join)
	Step 2: Applying the ON Filter (Join Condition)
	Step 3: Adding Outer Rows
	Step 4: Applying the WHERE Filter
	Step 5: Grouping
	Step 6: Applying the CUBE or ROLLUP Option
	Step 7: Applying the HAVING Filter
	Step 8: Processing the SELECT List
	Step 9: Applying the DISTINCT Clause
	Step 10: Applying the ORDER BY Clause
	Step 11: Applying the TOP Option

	New Logical Processing Phases in SQL Server 2005
	Table Operators
	OVER Clause
	Set Operations

	Conclusion

	Chapter 6: Aggregating and Pivoting Data
	OVER Clause
	Tiebreakers
	Running Aggregations
	Cumulative Aggregations
	Sliding Aggregations
	Year-To-Date (YTD)

	Pivoting
	Pivoting Attributes
	Relational Division
	Aggregating Data

	Unpivoting
	Custom Aggregations
	Custom Aggregations Using Pivoting
	User Defined Aggregates (UDA)
	Specialized Solutions

	Histograms
	Grouping Factor
	CUBE and ROLLUP
	CUBE
	ROLLUP

	Conclusion

